We report imine- and amine-based dinucleating ligands bearing a bisphenol backbone and explore their coordination chemistry with zinc to form zinc alkyl, alkoxide, acetate, and amide complexes. Full characterization of the complexes shows that this ligand framework can support dinuclear and trinuclear complexes. We explore the reactivity of the zinc alkyl and alkoxide complexes as catalysts for the ring opening polymerization of lactide and compared this reactivity to analogous mononuclear complexes.
View Article and Find Full Text PDFWe report the first example of discrete cationic indium complexes for the copolymerization of epoxides, cyclic ethers, and lactide. [SalenIn][SbF6] in particular proved to be a highly active catalyst for the homo-polymerization of functionalized epoxides and their copolymerization with other cyclic ethers THF, oxetane and oxepane. This catalyst also proved competent in the polymerization of epichlorohydrin and lactide, forming copolymers with good activity and control.
View Article and Find Full Text PDFThe impact of the metal size and Lewis acidity on the polymerization activity of group 13 metal complexes was studied, and it was shown that, within the same ligand family, indium complexes are far more reactive and selective than their gallium analogues. To this end, gallium and aluminum complexes supported by a tridentate diaminophenolate ligand, as well as gallium complexes supported by N,N'-ethylenebis(salicylimine)(salen) ligands, were synthesized and compared to their indium analogues. Using the tridentate ligand set, it was possible to isolate the gallium chloride complexes 3 and (±)-4 and the aluminum analogues 5 and (±)-6.
View Article and Find Full Text PDFThe electronic effects of nitrogen donors in zinc catalysts for ring-opening polymerization of cyclic esters were investigated. Alkyl and benzyloxy zinc complexes supported by tridentate diamino- and aminoimino phenolate ligands were synthesized, and their solid-state and solution structures characterized. The solution-state structures showed that the alkyl complexes are mononuclear, while the alkoxy complexes are dimeric with the ligands coordinated with different denticities depending on the nature of the ligand donors.
View Article and Find Full Text PDFThe synthesis of the first alkoxide-bridged indium complex supported by a chiral dinucleating ligand platform (1), along with its zinc analogue (2), is reported. Both complexes are synthesized in a one-pot reaction starting from a chiral dinucleating bis(diamino)phenolate ligand platform, sodium ethoxide, and respective metal salts. The dinucleating indium analogue (7) based on an achiral ligand backbone is also reported.
View Article and Find Full Text PDF