Publications by authors named "Tanksale A"

Sustainable production of acetic acid is a high priority due to its high global manufacturing capacity and numerous applications. Currently, it is predominantly synthesized via carbonylation of methanol, in which both the reactants are fossil-derived. Carbon dioxide transformation into acetic acid is highly desirable to achieve net zero carbon emissions, but significant challenges remain to achieve this efficiently.

View Article and Find Full Text PDF

Methanol-Water (mw) mixtures, with or without a solute, display a nonideal thermodynamic behavior, typically attributed to the structure of the microphase. However, experimental observation of the microphase structures at the molecular length scale has been a challenge. We report the presence of molecular clusters in mw and formaldehyde-methanol-water (fmw) mixtures using small-angle neutron scattering (SANS) experiments and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

To understand the mechanisms responsible for thermal decomposition of a Zr-MOF (MIL-140C), we perform atomistic-scale molecular dynamics (MD) simulations and discuss the simulation data in comparison with the TEM images obtained for the decomposed Zr-MOF. First, we introduce the ReaxFF parameters suitable for the Zr/C/H/O chemistry and then apply them to investigate the thermal stability and morphological changes in the MIL-140C during heating. Based on the performed simulations we propose an atomic mechanism for the collapse of the MIL-140C and the molecular pathways for carbon monoxide formation, the main product of the MIL-140C thermal degradation.

View Article and Find Full Text PDF

The emergence of facile approaches for the large-scale production of graphene oxide (GO) membranes necessitates a clearer understanding of their potential to foul and, more importantly, strategies for efficient recovery of membrane performance following fouling. Here, we systematically investigated the feasibility of water, ethanol, and hypochlorite as cleaning agents to remove organic foulants over a GO membrane. Among them, 100 ppm hypochlorite solution showed a remarkable ability to remove bovine serum albumin (BSA) and could recover the membrane flux up to 98% after five cycles of BSA filtration and cleaning.

View Article and Find Full Text PDF

Polymer composites are fabricated by incorporating fillers into a polymer matrix. The intent for addition of fillers is to improve the physical, mechanical, chemical and rheological properties of the composite. This study reports on a unique polymer composite using hydrochar, synthesised by microwave-assisted hydrothermal carbonization of rice husk, as filler in polylactide matrix.

View Article and Find Full Text PDF

The process parameters of microwave-induced hydrothermal carbonization (MIHTC) play an important role on the hydrothermal chars (hydrochar) yield. The effect of reaction temperature, reaction time, particle size and biomass to water ratio was optimized for hydrochar yield by modeling using the central composite design (CCD). Further, the rice straw and hydrochar at optimum conditions have been characterized for energy, chemical, structural and thermal properties.

View Article and Find Full Text PDF

The process parameters of microwave hydrothermal carbonization (MHTC) have significant effect on yield of hydrochar. This study discusses the effect of process parameters on hydrochar yield produced from MHTC of rice husk. Results revealed that, over the ranges tested, a lower temperature, lower reaction time, lower biomass to water ratio, and higher particle size produce more hydrochar.

View Article and Find Full Text PDF

One of the grand challenges of this century is to transition fuels and chemicals production derived from fossil feedstocks to renewable feedstocks such as cellulosic biomass. Here we describe fast microwave conversion of microcrystalline cellulose (MCC) in water, with dilute acid catalyst to produce valuable platform chemicals. Single 10min microwave assisted treatment was able to convert >60% of MCC, with >50mol% yield of desirable products such as glucose, HMF, furfural and levulinic acid.

View Article and Find Full Text PDF

A synthetic route to bis-indolyldihydroxybenzoquinones was adapted for parallel organic synthesis. The route involves selective conjugate addition of an indole to dichlorobenzoquinone promoted by Brønsted acid, followed by a Lewis acid-promoted conjugate addition of a second indole and a final hydrolysis. Methods for high-throughput purification of the products of this synthesis were also developed.

View Article and Find Full Text PDF

Alpha-crystallin, the major eye-lens protein with sequence homology with heat-shock proteins (HSPs), acts like a molecular chaperone by suppressing the aggregation of damaged crystallins and proteins. To gain more insight into its chaperoning ability, we used a protease as the model system that is known to require a propeptide (intramolecular chaperone) for its proper folding. The protease ("N" state) from Conidiobolus macrosporus (NCIM 1298) unfolds at pH 2.

View Article and Find Full Text PDF

An alkaline protease inhibitor (API) from a Streptomyces sp. NCIM 5127 was shown to possess antifungal activity against several phytopathogenic fungi besides its antiproteolytic (anti-feedent) activity [J. V.

View Article and Find Full Text PDF

The presence, microenvironment, and proximity of an essential Trp with the essential His and Cys residues in the active site of an alkaline protease have been demonstrated for the first time using chemical modification, chemo-affinity labeling, and fluorescence spectroscopy. Kinetic analysis of the N-bromosuccinimide- (NBS) or p-hydroxymercuribenzoate- (PHMB) modified enzyme from Conidiobolus sp. revealed that a single Trp and Cys are essential for activity in addition to the Asp, His, and Ser residues of the catalytic triad.

View Article and Find Full Text PDF

Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms.

View Article and Find Full Text PDF