Publications by authors named "Tanjin T Toma"

Accurate and automatic segmentation of individual cell instances in microscopy images is a vital step for quantifying the cellular attributes, which can subsequently lead to new discoveries in biomedical research. In recent years, data-driven deep learning techniques have shown promising results in this task. Despite the success of these techniques, many fail to accurately segment cells in microscopy images with high cell density and low signal-to-noise ratio.

View Article and Find Full Text PDF

Accurate detection and segmentation of single cells in three-dimensional (3D) fluorescence time-lapse images is essential for observing individual cell behaviors in large bacterial communities called biofilms. Recent progress in machine-learning-based image analysis is providing this capability with ever-increasing accuracy. Leveraging the capabilities of deep convolutional neural networks (CNNs), we recently developed bacterial cell morphometry in 3D (BCM3D), an integrated image analysis pipeline that combines deep learning with conventional image analysis to detect and segment single biofilm-dwelling cells in 3D fluorescence images.

View Article and Find Full Text PDF

Motivation: Data-driven deep learning techniques usually require a large quantity of labeled training data to achieve reliable solutions in bioimage analysis. However, noisy image conditions and high cell density in bacterial biofilm images make 3D cell annotations difficult to obtain. Alternatively, data augmentation via synthetic data generation is attempted, but current methods fail to produce realistic images.

View Article and Find Full Text PDF

Background: While continental level ancestry is relatively simple using genomic information, distinguishing between individuals from closely associated sub-populations (e.g., from the same continent) is still a difficult challenge.

View Article and Find Full Text PDF