Publications by authors named "Tanja Strini"

Background: The Heartmate 3 (HM 3) is a left ventricular assist device featuring less shear stress, milder acquired von Willebrand syndrome, and fewer bleeding incidences than its predecessor the Heartmate II (HM II). The novel surface coating of the HM 3 suggests less contact activation of plasmatic coagulation. We hypothesized that patients with HM 3 exhibit fewer aberrations in their thrombin potential than patients with HM II.

View Article and Find Full Text PDF

Hemodynamic alterations in Fontan patients (FP) are associated with hemostatic dysbalance and Fontan-associated liver disease. Studies of other hepatopathologies indicate an interplay between cholestasis, tissue factor (TF), and von Willebrand factor (VWF). Hence, we hypothesized a relationship between the accumulation of bile acids (BA) and these hemostatic factors in FP.

View Article and Find Full Text PDF

Despite fully functional primary hemostasis, platelets of healthy neonates exhibit hypoaggregability and secretion defects, which may be adaptations to specific requirements in this developmental stage. The etiologies for reduced signal transduction vary with the type of agonist. The discovered peculiarities are lower receptor densities, reduced calcium mobilization, and functional impairments of G proteins.

View Article and Find Full Text PDF

Objectives: The exact etiology of pruritus in chronic cholestasis is unknown. Pruritus intensity does not correlate with common biochemical indices and there is a lack of biomarkers guiding diagnosis and treatment. We explored profiles of bile acids (BA) and muricholic acids (MCA) as well as autotaxin (ATX) antigen levels as potential circulating biomarkers of pruritus in pediatric patients.

View Article and Find Full Text PDF

Bile acids (BA) have been found to promote coagulation by increasing tissue factor (TF) activity. The contribution of elevated BA levels and cholestasis to TF decryption within the liver parenchyma and the role of farnesoid X receptor (FXR) in this process remain unclear. We investigated the effects of BA on TF activity and thrombin generation in hepatocytes and correlated these effects with activation of FXR-dependent signaling and apoptosis.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem/stromal cells (BMSCs) are fundamental to bone regenerative therapies, tissue engineering, and postmenopausal osteoporosis. Donor variation among patients, cell heterogeneity, and unpredictable capacity for differentiation reduce effectiveness of BMSCs for regenerative cell therapies. The cell surface glycoprotein CD24 exhibits the most prominent differential expression during osteogenic versus adipogenic differentiation of human BMSCs.

View Article and Find Full Text PDF

Background: Mesenchymal stromal cells (MSC) possess immunomodulatory properties and low immunogenicity, both crucial properties for their development into an effective cellular immunotherapy. They have shown benefit in clinical trials targeting liver diseases; however the efficacy of MSC therapy will benefit from improvement of the immunomodulatory and immunogenic properties of MSC.

Methods: MSC derived from human umbilical cords (ucMSC) were treated for 3 days in vitro with various inflammatory factors, interleukins, vitamins and serum deprivation.

View Article and Find Full Text PDF

Background Aims: Mesenchymal stromal cells (MSCs) are used as experimental immunotherapy. Extensive culture expansion is necessary to obtain clinically relevant cell numbers, although the impact on MSCs stability and function is unclear. This study investigated the effects of long-term in vitro expansion on the stability and function of MSCs.

View Article and Find Full Text PDF

Age-related skeletal degeneration in patients with osteoporosis is characterized by decreased bone mass and occurs concomitant with an increase in bone marrow adipocytes. Using microarray expression profiling with high temporal resolution, we identified gene regulatory events in early stages of osteogenic and adipogenic lineage commitment of human mesenchymal stromal cells (hMSCs). Data analysis revealed three distinct phases when cells adopt a committed expression phenotype: initiation of differentiation (0-3 hr, phase I), lineage acquisition (6-24 hr, phase II), and early lineage progression (48-96 hr, phase III).

View Article and Find Full Text PDF
Article Synopsis
  • Mesenchymal stem cells (MSC) are being researched for treating immune diseases, but their use raises safety issues and is hindered by a lack of understanding of how they work.
  • Researchers created a type of MSC that doesn't respond to inflammation or secrete factors but retains their cellular structure, known as heat-inactivated MSC (HI-MSC).
  • Both HI-MSC and normal MSC showed similar behavior in mice and influenced immune responses differently, indicating that the therapeutic effects of MSC may rely more on how they are recognized by certain immune cells rather than their secreted factors.
View Article and Find Full Text PDF

Mesenchymal stromal cells (MSC) are increasingly used as an investigative therapeutic product for immune disorders and degenerative disease. Typically, MSC are isolated from human tissue, expanded in culture, and cryopreserved until usage. The safety and efficacy of MSC therapy will depend on the phenotypical and functional characteristics of MSC.

View Article and Find Full Text PDF