Publications by authors named "Tanja Schlecker"

Trypanosomes and Leishmania, the causative agents of severe tropical diseases, employ 2-Cys-peroxiredoxins together with cysteine-homologues of glutathione peroxidases and ascorbate-dependent peroxidases for the detoxification of hydroperoxides. All three types of peroxidases gain their reducing equivalents from the parasite-specific dithiol trypanothione [bis(glutathionyl)spermidine]. Based on their primary structure and cellular localization, the trypanosomatid 2-Cys-peroxiredoxins are subdivided into two families that occur in the mitochondrion and cytosol of the parasites.

View Article and Find Full Text PDF

Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three nearly identical genes for cysteine-homologues of the selenocysteine-containing glutathione peroxidases. The enzymes, which are essential for the parasites, lack glutathione peroxidase activity but catalyse the trypanothione/Tpx (tryparedoxin)-dependent reduction of hydroperoxides. Cys47, Gln82 and Trp137 correspond to the selenocysteine, glutamine and tryptophan catalytic triad of the mammalian selenoenzymes.

View Article and Find Full Text PDF

Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three nearly identical cysteine homologues of the classical selenocysteine-containing glutathione peroxidases. Although one of the sequences, peroxidase III, carries both putative mitochondrial and glycosomal targeting signals, the proteins are detectable only in the cytosol and mitochondrion of mammalian bloodstream and insect procyclic T. brucei.

View Article and Find Full Text PDF

The yeast phosphoinositide phosphatase Sac1p localizes to endoplasmic reticulum (ER) and Golgi membranes and has compartment-specific functions in these organelles. In this study we analyzed in detail the topology of Sac1p. Our data show that Sac1p is a type II transmembrane protein with a large N-terminal cytosolic domain, which is anchored in the membrane by the two potential transmembrane helices near the C terminus.

View Article and Find Full Text PDF