To improve the physical stability of nanoparticle dispersions, several methods for their transformation into stable and easily dispersible dry products have been investigated thus far. Recently, electrospinning was shown to be a novel nanoparticle dispersion drying method, which addresses the crucial challenges of the current drying methods. It is a relatively simple method, but it is affected by various ambient, process, and dispersion parameters, which impact the properties of the electrospun product.
View Article and Find Full Text PDFThe effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells .
View Article and Find Full Text PDFOne of the key technological challenges in the development of iron-oxide-based magnetic nanoparticles (MNPs) is their long-term physical stability in colloidal dispersions. This can be improved by their transformation into a dry form. Here, we introduce electrospinning as a drying method for ethanol-based and water-based MNP dispersions, which enables the preparation of high-loaded dry MNP products.
View Article and Find Full Text PDFPolymer nanofibers represent a promising delivery system for poorly water-soluble drugs; however, their supersaturating potential has not been explored yet. Here, carvedilol-loaded nanofibers based on poly(ethyleneoxide) and on amphiphilic block copolymer poloxamer 407 were produced by electrospinning. These nanofibers provided high carvedilol loading and improved dissolution of carvedilol.
View Article and Find Full Text PDFMaterials (Basel)
February 2019
The development of various magnetically-responsive nanostructures is of great importance in biomedicine. The controlled assembly of many small superparamagnetic nanocrystals into large multi-core clusters is needed for effective magnetic drug delivery. Here, we present a novel one-pot method for the preparation of multi-core clusters for drug delivery (i.
View Article and Find Full Text PDFNanofibers combined with an antimicrobial represent a powerful strategy for treatment of various infections. Local infections usually have a low fluid volume available for drug release, whereas pharmacopoeian dissolution tests include a much larger receptor volume. Therefore, the development of novel drug-release methods that more closely resemble the in-vivo conditions is necessary.
View Article and Find Full Text PDFMagnetically-assisted delivery of therapeutic agents to the site of interest, which is referred to as magnetic drug targeting, has proven to be a promising strategy in a number of studies. One of the key advantages over other targeting strategies is the possibility to control remotely the distribution and accumulation of the nanocarriers after parenteral administration. However, preparation of effective and robust magnetically responsive nanocarriers based on superparamagnetic iron oxide nanocrystals (SPIONs) still represents a great scientific challenge, since spatial guidance of individual SPIONs is ineffective despite the presence of high magnetic field gradient.
View Article and Find Full Text PDFThe number of poorly water-soluble drug candidates is rapidly increasing; this represents a major challenge for the pharmaceutical industry. As a consequence, novel formulation approaches are required. Furthermore, if such a drug candidate is intended for the therapy of a specific group of the population, such as geriatric or pediatric, the formulation challenge is even greater, with the need to produce a dosage form that is acceptable for specific patients.
View Article and Find Full Text PDF