Objective: The aim of this study was to test whether a combination of sumatriptan with dual enkephalinase inhibitor PL37 would result in an additive or a synergistic effect.
Background: Combination treatment is frequently used to improve the therapeutic efficacy of drugs. The co-administration of two drugs may result in efficacy at lower doses than those needed for either drug alone, thus minimizing side effects.
Objective: The aim of this study was to evaluate whether elevating levels of enkephalin by inhibiting their degradation can attenuate stress-induced migraine-like behaviors in mice.
Background: Previous studies in animals have suggested the delta opioid receptor (DOR) as a novel migraine target. The primary endogenous ligands for DOR are enkephalins and their levels can be increased by pharmacological inhibition of enkephalinases; however, it is not clear whether enkephalinase inhibition can be efficacious in preclinical migraine models through activation of DOR or whether other opioid receptors might be involved.
The dual enkephalinase inhibitor PL37, a small molecule that protects enkephalins from rapid degradation, has demonstrated analgesic properties in animal pain models and in early human clinical trials. This study tested the antimigraine potential of PL37 on cutaneous mechanical hypersensitivity affecting cephalic regions in migraineurs. Using behavioural testing and c-Fos immunoreactivity in male rats, we investigated the effects of single (oral or intravenous) and repeated oral administration of PL37 on changes in cutaneous mechanical sensitivity and sensitization of the trigeminocervical complex induced by repeated administration of the nitric oxide donor, isosorbide dinitrate.
View Article and Find Full Text PDFOcular pain is a core symptom of inflammatory or traumatic disorders affecting the anterior segment. To date, the management of chronic ocular pain remains a therapeutic challenge in ophthalmology. The main endogenous opioids (enkephalins) play a key role in pain control but exhibit only transient analgesic effects due to their rapid degradation.
View Article and Find Full Text PDFBackground: The first line pharmacological treatment of cancer pain is morphine and surrogates but a significant pain relief and a reduction of the side-effects of these compounds makes it necessary to combine them with other drugs acting on different targets. The aim of this study was to measure the antinociceptive effect on cancer-induced bone pain resulting from the association of the endogenous opioids enkephalin and non-opioid analgesic drugs. For this purpose, PL265 a new orally active single dual inhibitor of the two degrading enkephalins enzymes, neprilysin (NEP) and aminopeptidase N (APN) was used.
View Article and Find Full Text PDFNew neprilysin inhibitors containing an α-mercaptoketone HSC(RR)CO group, as zinc ligand were designed. Two parameters were explored for potency optimization: the size of the inhibitor which could interact with the S, S' or S' domain of the enzyme and the nature of the substituents R, R of the mercaptoketone group. Introduction of a cyclohexyl chain in R, R position and a (3-thiophen)benzyl group in position R (compound 12n) yielded to the most potent inhibitor of this series with a Ki value of 2±0.
View Article and Find Full Text PDFLeukotriene A4 hydrolase (LTA4H) is a bifunctional zinc-dependent metalloprotease bearing both an epoxide hydrolase, producing the pro-inflammatory LTB4 leukotriene, and an aminopeptidase activity, whose physiological relevance has long been ignored. Distinct substrates are commonly used for each activity, although none is completely satisfactory; LTA4, substrate for the hydrolase activity, is unstable and inactivates the enzyme, whereas aminoacids β-naphthylamide and para-nitroanilide, used as aminopeptidase substrates, are poor and nonselective. Based on the three-dimensional structure of LTA4H, we describe a new, specific, and high-affinity fluorigenic substrate, PL553 [L-(4-benzoyl)phenylalanyl-β-naphthylamide], with both in vitro and in vivo applications.
View Article and Find Full Text PDFDetection and quantification of low doses of botulinum toxin serotype A (BoNT/A) in medicinal preparations require precise and sensitive methods. With mounting pressure from governmental authorities to replace the mouse LD50 assay, interest in alternative methods such as the endopeptidase assay, quantifying the toxin active moiety, is growing. Using internal collision-induced fluorescence quenching, Pharmaleads produced peptides encompassing the SNAP-25 cleavage site: a 17-mer (PL63) and a 48-mer (PL50) reaching the previously identified α-exosite, with PL50 showing higher apparent affinity for BoNT/A.
View Article and Find Full Text PDFLegionella pneumophila has been shown to secrete a protease termed major secretory protein (Msp). This protease belongs to the M4 family of metalloproteases and shares 62.9% sequence similarity with pseudolysin (EC 3.
View Article and Find Full Text PDFP947 (DOTA-Gd-peptide) was recently identified as an MRI contrast agent for the detection and characterization of the matrix metalloproteinases (MMP)-rich atherosclerotic plaques. Because this product displays a broad spectrum affinity for the MMP family, we hypothesized that it may also recognize other metalloproteinases overactivated in vulnerable atherosclerotic plaques. Therefore, this study aimed at describing, at the molecular and cellular level, the interactions between P947 and proteases of atherosclerotic plaques.
View Article and Find Full Text PDFProtease inhibitors represent a major class of drugs, even though a large number of proteases remain unexplored. Consequently, a great interest lies in the identification of highly sensitive substrates useful for both the characterization and the validation of these enzyme targets and for the design of inhibitors as potential therapeutic agents through high-throughput screening (HTS). With this aim, a synthetic substrate library, in which the highly fluorescent (L)-pyrenylalanine residue (Pya) is efficiently quenched by its proximity with the p-nitro-(L)-phenylalanine (Nop) moiety, was designed.
View Article and Find Full Text PDFEndothelin-converting enzyme-2 (ECE-2) is a membrane-bound zinc-dependent metalloprotease that shares a high degree of sequence homology with ECE-1, but displays an acidic pH optimum characteristic of maturing enzymes acting late in the secretory pathway. Although ECE-2, like ECE-1, can cleave the big endothelin intermediate to produce the vasoconstrictive endothelin peptide, its true physiological function remains to be elucidated, a task that is hampered by the lack of specific tools to study and discriminate ECE-2 from ECE-1, i.e.
View Article and Find Full Text PDFBotulinum neurotoxin type A (BoNT/A), the most poisonous substance known to humans, is a potential bioterrorism agent. The light-chain protein induces a flaccid paralysis through cleavage of the 25-kDa synaptosome-associated protein (SNAP-25), involved in acetylcholine release at the neuromuscular junction. BoNT/A is widely used as a therapeutic agent and to reduce wrinkles.
View Article and Find Full Text PDFObjective: Despite great advances in our knowledge, atherosclerosis continues to kill more people than any other disease in the Western world. This is because our means of identifying truly vulnerable patients is limited. Prediction of atherosclerotic plaque rupture may be addressed by MRI of activated matrix metalloproteinases (MMPs), a family of enzymes that have been implicated in the vulnerability of plaques prone to rupture.
View Article and Find Full Text PDFThe Kell blood group is constituted by two covalently linked antigens at the surface of red blood cells, Kell and Kx. Whereas Kell is a metalloprotease with demonstrated in vitro enzymatic activity, the role of Kx thereon, and/or alone, remains unknown, although its absence is linked to the McLeod syndrome, a neuroacanthocytosis. In the central nervous system, the expression of Kell and XK has been suggested, but their expression patterns remain uncharacterized, as are the post-translational pathogenic mechanisms involved in the development of the McLeod syndrome.
View Article and Find Full Text PDFNeurotransmitters have emerged as important players in the control of programmed cell death in the cerebral cortex. We report that genetic depletion of serotonin, dopamine, and norepinephrine in mice lacking the vesicular monoamine transporter (VMAT2 KO mice) causes an increase in cell death in the superficial layers of the cingulate and retrosplenial cortices during early postnatal life (postnatal days 0-4). Electron microscopy and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling indicated that this represents a form of apoptosis.
View Article and Find Full Text PDFExcitotoxic damage appears to be a critical factor in the formation of perinatal brain lesions associated with cerebral palsy (CP). When injected into newborn mice, the glutamatergic analogue, ibotenate, produces cortical lesions and white matter cysts that mimic human perinatal brain lesions. Neuropeptides are neuronal activity modulators and could therefore modulate glutamate-induced lesions.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2005
Modeling the three-dimensional structure of neprilysin 2 (NEP2) using the crystal structure of neprilysin as template revealed that their active sites share many common features, though slight differences therein cannot completely account for their specific pharmacological profiles. Recent evidence also suggest that residues outside the active site can play crucial functions in the maturation and enzymatic activity of these metalloproteases. To further explore the functions of amino acids in the acquisition and maintenance of the NEP2 structure, site-directed mutagenesis of conserved residues involved in the enzymatic activity of ECE-1 was performed.
View Article and Find Full Text PDFThe Kell blood group is a highly polymorphic system containing over 20 different antigens borne by the protein Kell, a 93-kDa type II glycoprotein that displays high sequence homology with members of the M13 family of zinc-dependent metalloproteases whose prototypical member is neprilysin. Kell K1 is an antigen expressed in 9% of the Caucasian population, characterized by a point mutation (T193M) of the Kell K2 antigen, and located within a putative N-glycosylation consensus sequence. Recently, a recombinant, non-physiological, soluble form of Kell was shown to cleave Big ET-3 to produce the mature vasoconstrictive peptide.
View Article and Find Full Text PDFProtein Pept Lett
October 2004
Neprilysin 2 is a recently identified glycoprotein displaying the highest degree of sequence identity with neprilysin (EC 3.4.24.
View Article and Find Full Text PDFNeprilysin 2 (NEP2), a recently identified member of the M13 subfamily of metalloproteases, shares the highest degree of homology with the prototypical member of the family neprilysin. Whereas the study of the in vitro enzymatic activity of NEP2 shows that it resembles that of NEP as it cleaves the same substrates often at the same amide bonds and binds the same inhibitory compounds albeit with different potencies, its physiological role remains elusive because of the lack of selective inhibitors. To aid in the design of these novel compounds and better understand the different inhibitory patterns of NEP and NEP2, the x-ray structure of NEP was used as a template to build a model of the NEP2 active site.
View Article and Find Full Text PDFNeprilysin (NEP) 2 is a recently cloned glycoprotein displaying a high degree of sequence identity with neprilysin (EC 3.4.24.
View Article and Find Full Text PDF