Clinical use of 2-deoxystreptamine aminoglycoside antibiotics, which target the bacterial ribosome, is compromised by adverse effects related to limited drug selectivity. Here we present a series of 4',6'-O-acetal and 4'-O-ether modifications on glucopyranosyl ring I of aminoglycosides. Chemical modifications were guided by measuring interactions between the compounds synthesized and ribosomes harbouring single point mutations in the drug-binding site, resulting in aminoglycosides that interact poorly with the drug-binding pocket of eukaryotic mitochondrial or cytosolic ribosomes.
View Article and Find Full Text PDFAlthough the classical antibiotic spectinomycin is a potent bacterial protein synthesis inhibitor, poor antimycobacterial activity limits its clinical application for treating tuberculosis. Using structure-based design, we generated a new semisynthetic series of spectinomycin analogs with selective ribosomal inhibition and excellent narrow-spectrum antitubercular activity. In multiple murine infection models, these spectinamides were well tolerated, significantly reduced lung mycobacterial burden and increased survival.
View Article and Find Full Text PDFIntracellular metabolites arise from the molecular integration of genomic and environmental factors that jointly determine metabolic activity. However, it is not clear how the interplay of genotype, nutrients, growth, and fluxes affect metabolite concentrations globally. Here we used quantitative metabolomics to assess the combined effect of environment and genotype on the metabolite composition of a yeast cell.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2012
The kanamycins form an important subgroup of the 4,6-disubstituted 2-deoxystreptamine aminoglycoside antibiotics, comprising kanamycin A, kanamycin B, tobramycin, and dibekacin. These compounds interfere with protein synthesis by targeting the ribosomal decoding A site, and they differ in the numbers and locations of amino and hydroxy groups of the glucopyranosyl moiety (ring I). We synthesized kanamycin analogues characterized by subtle variations of the 2' and 6' substituents of ring I.
View Article and Find Full Text PDFAminoglycosides are potent antibacterials, but therapy is compromised by substantial toxicity causing, in particular, irreversible hearing loss. Aminoglycoside ototoxicity occurs both in a sporadic dose-dependent and in a genetically predisposed fashion. We recently have developed a mechanistic concept that postulates a key role for the mitochondrial ribosome (mitoribosome) in aminoglycoside ototoxicity.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2011
Capreomycin and the structurally similar compound viomycin are cyclic peptide antibiotics which are particularly active against Mycobacterium tuberculosis, including multidrug resistant strains. Both antibiotics bind across the ribosomal interface involving 23S rRNA helix 69 (H69) and 16S rRNA helix 44 (h44). The binding site of tuberactinomycins in h44 partially overlaps with that of aminoglycosides, and they share with these drugs the side effect of irreversible hearing loss.
View Article and Find Full Text PDFDrug resistance in Mycobacterium tuberculosis is a global problem, with major consequences for treatment and public health systems. As the emergence and spread of drug-resistant tuberculosis epidemics is largely influenced by the impact of the resistance mechanism on bacterial fitness, we wished to investigate whether compensatory evolution occurs in drug-resistant clinical isolates of M. tuberculosis.
View Article and Find Full Text PDFMany proteins are regulated by ubiquitin-dependent proteolysis. Substrate ubiquitylation can be stimulated by additional post-translational modifications, including small ubiquitin-like modifier (SUMO) conjugation. The recently discovered SUMO-targeted ubiquitin ligases (STUbLs) mediate the latter effect; however, no endogenous substrates of STUbLs that are degraded under normal conditions are known.
View Article and Find Full Text PDF