Water oxidation is a fundamental step in artificial photosynthesis for solar fuels production. In this study, we report a single-site Ru-based water oxidation catalyst, housing a dicarboxylate-benzimidazole ligand, that mediates both chemical and light-driven oxidation of water efficiently under neutral conditions. The importance of the incorporation of the negatively charged ligand framework is manifested in the low redox potentials of the developed complex, which allows water oxidation to be driven by the mild one-electron oxidant [Ru(bpy) ] (bpy=2,2'-bipyridine).
View Article and Find Full Text PDFPhotocatalytic water oxidation represents a key process in conversion of solar energy into fuels and can be facilitated by the use of molecular transition metal-based catalysts. A novel straightforward approach for covalent linking of the catalytic units to other moieties is demonstrated by preparation of a dinuclear complex containing two [Ru(pdc)(pic)]-derived units (pdc = 2,6-pyridinedicarboxylate, pic = 4-picoline). The activity of this complex towards chemical and photochemical oxidation of water was evaluated and a detailed insight is given into the interactions between the catalyst and acetonitrile, a common co-solvent employed to increase solubility of water oxidation catalysts.
View Article and Find Full Text PDFThe synthesis of two molecular iron complexes, a dinuclear iron(iii,iii) complex and a nonanuclear iron complex, based on the dinucleating ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) is described. The two iron complexes were found to drive the oxidation of water by the one-electron oxidant [Ru(bpy)3](3+).
View Article and Find Full Text PDFVesterinen, V, Nummela, A, Laine, T, Hynynen, E, Mikkola, J, and Häkkinen, K. A submaximal running test with postexercise cardiac autonomic and neuromuscular function in monitoring endurance training adaptation. J Strength Cond Res 31(1): 233-243, 2017-The aim of this study was to investigate whether a submaximal running test (SRT) with postexercise heart rate recovery (HRR), heart rate variability (HRV), and countermovement jump (CMJ) measurements could be used to monitor endurance training adaptation.
View Article and Find Full Text PDFMed Sci Sports Exerc
July 2016
Introduction: Measures of HR variability (HRV) have shown potential to be of use in training prescription.
Purpose: The aim of this study was to investigate the effectiveness of using HRV in endurance training prescription.
Methods: Forty recreational endurance runners were divided into the HRV-guided experimental training group (EXP) and traditional predefined training group (TRAD).
The primary aim of the present study was to investigate the acute gene expression responses of PGC-1 isoforms and PGC-1α target genes related to mitochondrial biogenesis (cytochrome C), angiogenesis (VEGF-A), and muscle hypertrophy (myostatin), after a resistance or endurance exercise bout. In addition, the study aimed to elucidate whether the expression changes of studied transcripts were linked to phosphorylation of AMPK and MAPK p38. Nineteen physically active men were divided into resistance exercise (RE, n = 11) and endurance exercise (EE, n = 8) groups.
View Article and Find Full Text PDFInt J Sports Physiol Perform
April 2016
Unlabelled: Regular monitoring of adaptation to training is important for optimizing training load and recovery, which is the main factor in successful training.
Purpose: To investigate the usefulness of a novel submaximal running test (SRT) in field conditions in predicting and tracking changes of endurance performance.
Methods: Thirty-five endurance-trained men and women (age 20-55 y) completed the 18-wk endurance-training program.
The application of the recently discovered oxofluoride solid solution (Cox Ni1-x )3 Sb4 O6 F6 as a catalyst for water oxidation is demonstrated. The phase exhibits a cubic arrangement of the active metal that forms oxo bridges to the metalloid with possible catalytic participation. The Co3 Sb4 O6 F6 compound proved to be capable of catalyzing 2H2 O→O2 +4H(+) +4e(-) at 0.
View Article and Find Full Text PDFInsight into how H2 O is oxidized to O2 is envisioned to facilitate the rational design of artificial water oxidation catalysts, which is a vital component in solar-to-fuel conversion schemes. Herein, we report on the mechanistic features associated with a dinuclear Ru-based water oxidation catalyst. The catalytic action of the designed Ru complex was studied by the combined use of high-resolution mass spectrometry, electrochemistry, and quantum chemical calculations.
View Article and Find Full Text PDFHerein is described the preparation of a dinuclear molecular Ru catalyst for H2O oxidation. The prepared catalyst mediates the photochemical oxidation of H2O with an efficiency comparable to state-of-the-art catalysts.
View Article and Find Full Text PDFTwo new oxohalides Co4Se3O9Cl2 and Co3Se4O10Cl2 have been synthesized by solid state reactions. They crystallize in the orthorhombic space group Pnma and the monoclinic space group C2/m respectively. The crystal structure of the two compounds are made up of similar building blocks; Co4Se3O9Cl2 is made up of [CoO4Cl2], [CoO5Cl] and [SeO3] polyhedra and Co3Se4O10Cl2 is made up of [CoO4Cl2] and [SeO3] polyhedra.
View Article and Find Full Text PDF