Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization.
View Article and Find Full Text PDFMethods Mol Biol
April 2022
Live imaging of axons allows for the determination of motility and directionality of proteins or organelles. In Drosophila, axonal transport has been predominantly characterized in peripheral neurons, such as larval motor neurons and sensory neurons of the adult wing. As peripheral neurons and central nervous system (CNS) neurons are inherently different, we provide a method to live-image axonal transport of CNS neurons in the cervical connective using an upright or inverted microscope.
View Article and Find Full Text PDFIn rodents, all three paralogs of the Attractin (Atrn) transmembrane protein family exhibit strong phenotypic overlap and are implicated in the regulation of the same G-protein coupled receptors (GPCR) as E3-ligase Mahogunin ring finger 1 (Mgrn1). Recently it was shown that the highly conserved intracellular MASRPF motif in mammal Multiple epidermal growth factor-like domain 8 protein is required for binding of Mgrn1 to mediate ubiquitination of GPCR Smoothened in vitro. Here, we show that the MASRPF motif of Distracted, the ortholog of ATRN and Attractin-like 1, is required for association with Mgrn1 (dMgrn1) in vivo.
View Article and Find Full Text PDFCharcot-Marie-Tooth disease (CMT) is a length-dependent peripheral neuropathy. The aminoacyl-tRNA synthetases constitute the largest protein family implicated in CMT. Aminoacyl-tRNA synthetases are predominantly cytoplasmic, but are also present in the nucleus.
View Article and Find Full Text PDFThe role of the Amyloid Precursor Protein (APP) in the pathology of Alzheimer's disease (AD) has been well studied. However, the normal function of APP in the nervous system is poorly understood. Here, we characterized the role of the homolog (APPL) in the adult giant fiber (GF) neurons.
View Article and Find Full Text PDFDysregulation of sleep and feeding has widespread health consequences. Despite extensive epidemiological evidence for interactions between sleep and metabolic function, little is known about the neural or molecular basis underlying the integration of these processes. D.
View Article and Find Full Text PDFL1 cell adhesion molecule (L1CAM) is well-known for its importance in nervous system development and cancer progression. In addition to its role as a plasma membrane protein in cytoskeletal organization, recent studies have revealed that both transmembrane and cytosolic fragments of proteolytically cleaved vertebrate L1CAM translocate to the nucleus. studies indicate that nuclear L1CAM affects genes with functions in DNA post-replication repair, cell cycle control, and cell migration and differentiation, but its role and how its nuclear levels are regulated is less well-understood.
View Article and Find Full Text PDFα-Conotoxins inhibit nicotinic acetylcholine receptors (nAChRs) and are used as probes to study cholinergic pathways in vertebrates. Model organisms, such as Drosophila melanogaster, express nAChRs in their CNS that are suitable to investigate the neuropharmacology of α-conotoxins in vivo. Here we report the paired nanoinjection of native α-conotoxin PIA and two novel α-conotoxins, PIC and PIC[O7], from the injected venom of Conus purpurascens and electrophysiological recordings of their effects on the giant fiber system (GFS) of D.
View Article and Find Full Text PDFLowered insulin/insulin-like growth factor (IGF) signaling (IIS) can extend healthy lifespan in worms, flies, and mice, but it can also have adverse effects (the "insulin paradox"). Chronic, moderately lowered IIS rescues age-related decline in neurotransmission through the Drosophila giant fiber system (GFS), a simple escape response neuronal circuit, by increasing targeting of the gap junctional protein innexin shaking-B to gap junctions (GJs). Endosomal recycling of GJs was also stimulated in cultured human cells when IIS was reduced.
View Article and Find Full Text PDFHere, we established the Drosophila Giant Fiber neurons (GF) as a novel model to study axonal trafficking of L1-type Cell Adhesion Molecules (CAM) Neuroglian (Nrg) in the adult CNS using live imaging. L1-type CAMs are well known for their importance in nervous system development and we previously demonstrated a role for Nrg in GF synapse formation. However, in the adult they have also been implicated in synaptic plasticity and regeneration.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) play a pivotal role in synaptic transmission of neuronal signaling pathways and are fundamentally involved in neuronal disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In vertebrates, cholinergic pathways can be selectively inhibited by α-conotoxins; we show that in the model organism Drosophila, the cholinergic component of the giant fiber system is inhibited by α-conotoxins MII, AuIB, BuIA, EI, PeIA, and ImI. The injection of 45 pmol/fly of each toxin dramatically decreases the response of the giant fiber to dorsal longitudinal muscle (GF-DLM) connection to 20 ± 13.
View Article and Find Full Text PDFPTP69D is a receptor protein tyrosine phosphatase (RPTP) with two intracellular catalytic domains (Cat1 and Cat2) and has been shown to play a role in axon guidance of embryonic motoneurons as well as targeting of photoreceptor neurons in the visual system of Drosophila melanogaster. Here, we characterized the developmental role of PTP69D in the giant fiber (GF) neurons, two interneurons in the central nervous system (CNS) that control the escape response of the fly. Our studies revealed that PTP69D has a function in synaptic terminal growth in the CNS.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases are ubiquitously expressed proteins that charge tRNAs with their cognate amino acids. By ensuring the fidelity of protein synthesis, these enzymes are essential for the viability of every cell. Yet, mutations in six tRNA synthetases specifically affect the peripheral nerves and cause Charcot-Marie-Tooth (CMT) disease.
View Article and Find Full Text PDFA large number of different pathological L1CAM mutations have been identified that result in a broad spectrum of neurological and non-neurological phenotypes. While many of these mutations have been characterized for their effects on homophilic and heterophilic interactions, as well as expression levels in vitro, there are only few studies on their biological consequences in vivo. The single L1-type CAM gene in Drosophila, neuroglian (nrg), has distinct functions during axon guidance and synapse formation and the phenotypes of nrg mutants can be rescued by the expression of human L1CAM.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson's disease, Alzheimer's disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7) has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart.
View Article and Find Full Text PDFThe precise control of synaptic connectivity is essential for the development and function of neuronal circuits. While there have been significant advances in our understanding how cell adhesion molecules mediate axon guidance and synapse formation, the mechanisms controlling synapse maintenance or plasticity in vivo remain largely uncharacterized. In an unbiased RNAi screen we identified the Drosophila L1-type CAM Neuroglian (Nrg) as a central coordinator of synapse growth, function, and stability.
View Article and Find Full Text PDFScreening compounds for in vivo activity can be used as a first step to identify candidates that may be developed into pharmacological agents. We developed a novel nanoinjection/electrophysiology assay that allows the detection of bioactive modulatory effects of compounds on the function of a neuronal circuit that mediates the escape response in Drosophila melanogaster. Our in vivo assay, which uses the Drosophila Giant Fiber System (GFS, Figure 1) allows screening of different types of compounds, such as small molecules or peptides, and requires only minimal quantities to elicit an effect.
View Article and Find Full Text PDFTo analyze the axonal and dendritic morphology of neurons, it is essential to obtain accurate labeling of neuronal structures. Preparing well labeled samples with little to no tissue damage enables us to analyze cell morphology and to compare individual samples to each other, hence allowing the identification of mutant anomalies. In the demonstrated dissection method the nervous system remains mostly inside the adult fly.
View Article and Find Full Text PDFBackground: One of the hallmarks of Alzheimer's disease, and several other degenerative disorders such as Inclusion Body Myositis, is the abnormal accumulation of amyloid precursor protein (APP) and its proteolytic amyloid peptides. To better understand the pathological consequences of inappropriate APP expression on developing tissues, we generated transgenic flies that express wild-type human APP in the skeletal muscles, and then performed anatomical, electrophysiological, and behavioral analysis of the adults.
Results: We observed that neither muscle development nor animal longevity was compromised in these transgenic animals.
Finding compounds that affect neuronal or muscular function is of great interest as potential therapeutic agents for a variety of neurological disorders. Alternative applications for these compounds include their use as molecular probes as well as insecticides. We have developed a bioassay that requires small amounts of compounds and allows for unbiased screening of biological activity in vivo.
View Article and Find Full Text PDFCold Spring Harb Protoc
July 2010
The giant fiber system (GFS) of Drosophila is a well-characterized neuronal circuit that mediates the escape response in the fly. It is one of the few adult neural circuits from which electrophysiological recordings can be made routinely. This protocol describes a simple procedure for stimulating the giant fiber neurons directly in the brain of the adult fly and obtaining recordings from the output muscles of the GFS: the tergotrochanteral "jump" muscle (TTM) and the large indirect flight muscles (dorsal longitudinal muscles, or DLMs).
View Article and Find Full Text PDFThe Drosophila standard brain has been a useful tool that provides information about position and size of different brain structures within a wild-type brain and allows the comparison of imaging data that were collected from individual preparations. Therefore the standard can be used to reveal and visualize differences of brain regions between wild-type and mutant brains and can provide spatial description of single neurons within the nervous system. Recently the standard brain was complemented by the generation of a ventral nerve cord (VNC) standard.
View Article and Find Full Text PDFDominant-intermediate Charcot-Marie-Tooth neuropathy (DI-CMT) is characterized by axonal degeneration and demyelination of peripheral motor and sensory neurons. Three dominant mutations in the YARS gene, encoding tyrosyl-tRNA synthetase (TyrRS), have so far been associated with DI-CMT type C. The molecular mechanisms through which mutations in YARS lead to peripheral neuropathy are currently unknown, and animal models for DI-CMTC are not yet available.
View Article and Find Full Text PDFCellular superoxide radicals (O(2)(-)) are mostly generated during mitochondrial oxygen metabolism. O(2)(-) serves as the raw material for many reactive oxygen species (ROS) members like H(2)O(2) and OH(.-) radicals following its catalysis by superoxide dismutase (SOD) enzymes and also by autocatalysis (autodismutation) reactions.
View Article and Find Full Text PDFWe have previously demonstrated a function for Neuroglian and Semaphorin1a in Drosophila giant fiber circuit formation. Both molecules are required for guiding the giant fibers out of the brain and have distinct functions during giant synapse formation. In this study we characterized the effects of various combinations of Neuroglian and Semaphorin1a gain and loss of function backgrounds on giant fiber circuitry formation.
View Article and Find Full Text PDF