Publications by authors named "Tanja Gempe"

Background: Hygienic behavior (HB) enables honeybees to tolerate parasites, including infection with the parasitic mite Varroa destructor, and it is a well-known example of a quantitative genetic trait. The understanding of the molecular processes underpinning the quantitative differences in this behavior remains limited.

Results: We performed gene expression studies in worker bees that displayed quantitative genetic differences in HB.

View Article and Find Full Text PDF

Background: Pooled samples are frequently used in experiments measuring gene expression. In this method, RNA from different individuals sharing the same experimental conditions and explanatory variables is blended and their concentrations are jointly measured. As a matter of principle, individuals are represented in equal shares in each pool.

View Article and Find Full Text PDF

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species.

View Article and Find Full Text PDF

Honeybees (Apis mellifera), which are important pollinators of plants, display remarkable individual behaviors that collectively contribute to the organization of a complex society. Advances in dissecting the complex processes of honeybee behavior have been limited in the recent past due to a lack of genetic manipulation tools. These tools are difficult to apply in honeybees because the unit of reproduction is the colony, and many interesting phenotypes are developmentally specified at later stages.

View Article and Find Full Text PDF

Some genes regulate phenotypes that are either present or absent. They are often important regulators of developmental switches and are involved in morphological evolution. We have little understanding of the molecular mechanisms by which these absence/presence gene functions have evolved, because the phenotype and fitness of molecular intermediate forms are unknown.

View Article and Find Full Text PDF

Division of labor in social insects has made the evolution of collective traits possible that cannot be achieved by individuals alone. Differences in behavioral responses produce variation in engagement in behavioral tasks, which as a consequence, generates a division of labor. We still have little understanding of the genetic components influencing these behaviors, although several candidate genomic regions and genes influencing individual behavior have been identified.

View Article and Find Full Text PDF

Animals have evolved a bewildering diversity of mechanisms to determine the two sexes. Studies of sex determination genes--their history and function--in non-model insects and Drosophila have allowed us to begin to understand the generation of sex determination diversity. One common theme from these studies is that evolved mechanisms produce activities in either males or females to control a shared gene switch that regulates sexual development.

View Article and Find Full Text PDF

Organisms have evolved a bewildering diversity of mechanisms to generate the two sexes. The honeybee (Apis mellifera) employs an interesting system in which sex is determined by heterozygosity at a single locus (the Sex Determination Locus) harbouring the complementary sex determiner (csd) gene. Bees heterozygous at Sex Determination Locus are females, whereas bees homozygous or hemizygous are males.

View Article and Find Full Text PDF

Sex determination in honeybees (Apis mellifera) is governed by heterozygosity at a single locus harbouring the complementary sex determiner (csd) gene, in contrast to the well-studied sex chromosome system of Drosophila melanogaster. Bees heterozygous at csd are females, whereas homozygotes and hemizygotes (haploid individuals) are males. Although at least 15 different csd alleles are known among natural bee populations, the mechanisms linking allelic interactions to switching of the sexual development programme are still obscure.

View Article and Find Full Text PDF

The current insect genome sequencing projects provide an opportunity to extend studies of the evolution of developmental genes and pathways in insects. In this paper we examine the conservation and divergence of genes and developmental processes between Drosophila and the honey bee; two holometabolous insects whose lineages separated approximately 300 million years ago, by comparing the presence or absence of 308 Drosophila developmental genes in the honey bee. Through examination of the presence or absence of genes involved in conserved pathways (cell signaling, axis formation, segmentation and homeobox transcription factors), we find that the vast majority of genes are conserved.

View Article and Find Full Text PDF

The first draft of the honey bee genome sequence and improved genetic maps are utilized to analyze a genome displaying 10 times higher levels of recombination (19 cM/Mb) than previously analyzed genomes of higher eukaryotes. The exceptionally high recombination rate is distributed genome-wide, but varies by two orders of magnitude. Analysis of chromosome, sequence, and gene parameters with respect to recombination showed that local recombination rate is associated with distance to the telomere, GC content, and the number of simple repeats as described for low-recombining genomes.

View Article and Find Full Text PDF