The NASA Mars 2020 Perseverance Rover Mission has collected samples of rock, regolith, and atmosphere within the Noachian-aged Jezero Crater, once the site of a delta-lake system with a high potential for habitability and biosignature preservation. Between sols 109 and 1,088 of the mission, 27 sample tubes have been sealed, including witness tubes. Each sealed sample tube has been collected along with detailed documentation provided by the Perseverance instrument payload, preserving geological and environmental context.
View Article and Find Full Text PDFA major objective of the Mars 2020 mission is to sample rocks in Jezero crater that may preserve organic matter for later return to Earth. Using an ultraviolet Raman and luminescence spectrometer, the Perseverance rover detected luminescence signals with maximal intensities at 330 to 350 nanometers and 270 to 290 nanometers that were initially reported as consistent with organics. Here, we test the alternative hypothesis that the 330- to 350-nanometer and 270- to 290-nanometer luminescence signals trace Ce in phosphate and silicate defects, respectively.
View Article and Find Full Text PDFThe Mars Sample Return mission intends to retrieve a sealed collection of rocks, regolith, and atmosphere sampled from Jezero Crater, Mars, by the NASA Perseverance rover mission. For all life-related research, it is necessary to evaluate water availability in the samples and on Mars. Within the first Martian year, Perseverance has acquired an estimated total mass of 355 g of rocks and regolith, and 38 μmoles of Martian atmospheric gas.
View Article and Find Full Text PDFPustular mats from Shark Bay, Western Australia, host complex microbial communities bound within an organic matrix. These mats harbour many poorly characterized organisms with low relative abundances (<1%), such as candidate phyla Hydrogenedentota and Sumerlaeota. Here, we aim to constrain the metabolism and physiology of these candidate phyla by analyzing two representative metagenome-assembled genomes (MAGs) from a pustular mat.
View Article and Find Full Text PDFPustular microbial mats in Shark Bay, Western Australia, are modern analogs of microbial systems that colonized peritidal environments before the evolution of complex life. To understand how these microbial communities evolved to grow and metabolize in the presence of various environmental stresses, the horizontal gene transfer (HGT) detection tool, MetaCHIP, was used to identify the horizontal transfer of genes related to stress response in 83 metagenome-assembled genomes from a Shark Bay pustular mat. Subsequently, maximum-likelihood phylogenies were constructed using these genes and their most closely related homologs from other environments in order to determine the likelihood of these HGT events occurring within the pustular mat.
View Article and Find Full Text PDFMarine ooids have formed in microbially colonized environments for billions of years, but the microbial contributions to mineral formation in ooids continue to be debated. Here we provide evidence of these contributions in ooids from Carbla Beach, Shark Bay, Western Australia. Dark 100-240 μm diameter ooids from Carbla Beach contain two different carbonate minerals.
View Article and Find Full Text PDFThe Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times.
View Article and Find Full Text PDFThe record of life during the Proterozoic is preserved by several different lithologies, but two in particular are linked both spatially and temporally: chert and carbonate. These lithologies capture a snapshot of dominantly peritidal environments during the Proterozoic. Early diagenetic chert preserves some of the most exceptional Proterozoic biosignatures in the form of microbial body fossils and mat textures.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2022
Enzymes catalyze key reactions within Earth's life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean.
View Article and Find Full Text PDFCyanobacteria and extracellular polymeric substances (EPS) in peritidal pustular microbial mats have a two-billion-year-old fossil record. To understand the composition, production, degradation, and potential role of EPS in modern analogous communities, we sampled pustular mats from Shark Bay, Australia and analyzed their EPS matrix. Biochemical and microscopic analyses identified sulfated organic compounds as major components of mat EPS.
View Article and Find Full Text PDFMicrobial fossils preserved by early diagenetic chert provide a window into the Proterozoic biosphere, but seawater chemistry, microbial processes, and the interactions between microbes and the environment that contributed to this preservation are not well constrained. Here, we use fossilization experiments to explore the processes that preserve marine cyanobacterial biofilms by the precipitation of amorphous silica in a seawater medium that is analogous to Proterozoic seawater. These experiments demonstrate that the exceptional silicification of benthic marine cyanobacteria analogous to the oldest diagnostic cyanobacterial fossils requires interactions among extracellular polymeric substances (EPS), photosynthetically induced pH changes, magnesium cations (Mg ), and >70 ppm silica.
View Article and Find Full Text PDFThe extent to which nutrients structure microbial communities in permanently stratified lakes is not well understood. This study characterized microbial communities from the anoxic layers of the meromictic and sulfidic Fayetteville Green Lake (FGL), NY, United States, and investigated the roles of organic electron donors and terminal electron acceptors in shaping microbial community structure and interactions. Bacterial communities from the permanently stratified layer below the chemocline (monimolimnion) and from enrichment cultures inoculated by lake sediments were analyzed using 16S rRNA gene sequencing.
View Article and Find Full Text PDFMethanogenic archaea have been shown to reduce iron from ferric [Fe(III)] to ferrous [Fe(II)] state, but minerals that form during iron reduction by different methanogens remain to be characterized. Here, we show that zerovalent iron (ZVI) minerals, ferrite [α-Fe(0)] and austenite [γ-Fe(0)], appear in the X-ray diffraction spectra minutes after the addition of ferrihydrite to the cultures of a methanogenic archaeon, (). cells and redox-active, nonenzymatic soluble organic compounds in organic-rich spent culture supernatants can promote the formation of ZVI; the latter compounds also likely stabilize ZVI.
View Article and Find Full Text PDFOxygenic photosynthesis supplies organic carbon to the modern biosphere, but it is uncertain when this metabolism originated. It has previously been proposed that photosynthetic reaction centres capable of splitting water arose by about 3 billion years ago on the basis of the inferred presence of manganese oxides in Archaean sedimentary rocks. However, this assumes that manganese oxides can be produced only in the presence of molecular oxygen, reactive oxygen species or by high-potential photosynthetic reaction centres.
View Article and Find Full Text PDFThe phylum Cyanobacteria includes free-living bacteria and plastids, the descendants of cyanobacteria that were engulfed by the ancestral lineage of the major photosynthetic eukaryotic group Archaeplastida. Endosymbiotic events that followed this primary endosymbiosis spread plastids across diverse eukaryotic groups. The remnants of the ancestral cyanobacterial genome present in all modern plastids, enable the placement of plastids within Cyanobacteria using sequence-based phylogenetic analyses.
View Article and Find Full Text PDFThe extent of oxygenated environments on the early Earth was much lower than today, and cyanobacteria were critical players in Earth's shift from widespread anoxia to oxygenated surface environments. Extant cyanobacteria that aggregate into cones, tufts and ridges are used to understand the long record of photosynthesis and microbe-mineral interactions during times when oxygen was much lower, i.e.
View Article and Find Full Text PDFThe ability to measure partial pressures of oxygen below 100 microbars and nanomolar dissolved oxygen concentrations in in situ laboratory systems benefits many fields including microbiology, geobiology, oceanography, chemistry, and materials science. Here, we present an easily constructible open-source design for a networked luminescence lifetime measurement system for in situ measurements in arbitrary laboratory containers. The system is well suited for measuring oxygen partial pressures in the 0-100 μbar range, with the maximum potentially usable upper range limit at around 10 mbar, depending on experimental conditions.
View Article and Find Full Text PDFWe investigated the influence of organic substrates and phosphate concentration on the rates of dissimilatory microbial sulfate reduction and the S/S isotopic fractionation produced by several species. Our experiments corroborate the previously reported species-specific correlation between sulfur isotope fractionation and cell-specific sulfate reduction rates. We also identify cell size as a key factor that contributes to the species-effect of this correlation.
View Article and Find Full Text PDFThe prevalence of lipids devoid of phosphorus suggests that the availability of phosphorus limits microbial growth and activity in many anoxic, stratified environments. To better understand the response of anaerobic bacteria to phosphate limitation and starvation, this study combines microscopic and lipid analyses with the measurements of fitness of pooled barcoded transposon mutants of the model sulfate reducing bacterium Desulfovibrio alaskensis G20. Phosphate-limited G20 has lower growth rates and replaces more than 90% of its membrane phospholipids by a mixture of monoglycosyl diacylglycerol (MGDG), glycuronic acid diacylglycerol (GADG) and ornithine lipids, lacks polyphosphate granules, and synthesizes other cellular inclusions.
View Article and Find Full Text PDFThe terrestrial cycling of Si is thought to have a large influence on the terrestrial and marine primary production, as well as the coupled biogeochemical cycles of Si and C. Biomineralization of silica is widespread among terrestrial eukaryotes such as plants, soil diatoms, freshwater sponges, silicifying flagellates and testate amoebae. Two major groups of testate (shelled) amoebae, arcellinids and euglyphids, produce their own silica particles to construct shells.
View Article and Find Full Text PDFRationale: The meromictic Fayetteville Green Lake (FGL) is of significant geobiological interest because of microbial cycling of sulfur within and below the permanent chemocline and in the euxinic deep waters. Studies of glycerol dibiphytanyl glycerol tetraethers (GDGTs) may help shed light on understanding the activity of archaeal communities in these habitats.
Methods: Normal-phase and reversed-phase liquid chromatography/mass spectrometry (LC/MS) analysis on total lipid extracts of environmental samples revealed series of GDGTs with different biphytane structures.
Proc Natl Acad Sci U S A
December 2014
Microbe-mediated soil uptake is the largest and most uncertain variable in the budget of atmospheric hydrogen (H2 ). The diversity and ecophysiological role of soil microorganisms that can consume low atmospheric abundances of H2 with high-affinity [NiFe]-hydrogenases is unknown. We expanded the library of atmospheric H2 -consuming strains to include four soil Harvard Forest Isolate (HFI) Streptomyces spp.
View Article and Find Full Text PDF