Axenic Ulva mutabilis gametes develop parthenogenetically into callus-like colonies consisting of undifferentiated cells without normal cell walls. From the accompanying microbial flora of established laboratory strains of U. mutabilis with normal morphology, a Roseobacter, a Sulfitobacter, and a Halomonas species were isolated.
View Article and Find Full Text PDFCK2 is a ubiquitous, pleiotropic, and constitutively active Ser/Thr protein kinase that controls protein expression, cell signaling, and ion channel activity. Phosphorylation sites for CK2 are located in the C terminus of both beta- and gamma-subunits of the epithelial Na(+) channel (ENaC). We examined the role of CK2 on the regulation of both endogenous ENaC in native murine epithelia and in Xenopus oocytes expressing rENaC.
View Article and Find Full Text PDFF508del is the most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that is responsible for the genetic disease Cystic Fibrosis (CF). It results in a major failure of CFTR to traffic to the apical membrane of epithelial cells, where it should function as a chloride (Cl-) channel. Most studies on localization, processing and cellular trafficking of wild-type (wt) and F508del-CFTR have been performed in non-epithelial cells.
View Article and Find Full Text PDFThe cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A and ATP-regulated Cl- channel that also controls the activity of other membrane transport proteins, such as the epithelial Na+ channel ENaC. Previous studies demonstrated that cytosolic domains of ENaC are critical for down-regulation of ENaC by CFTR, whereas others suggested a role of cytosolic Cl- ions. We therefore examined in detail the anion dependence of ENaC and the role of its cytosolic domains for the inhibition by CFTR and the Cl- channel CLC-0.
View Article and Find Full Text PDF