Publications by authors named "Tanita Wein"

Small cryptic plasmids have no clear effect on the host fitness and their functional repertoire remains obscure. The naturally competent cyanobacterium Synechocystis sp. PCC 6803 harbours several small cryptic plasmids; whether their evolution with this species is supported by horizontal transfer remains understudied.

View Article and Find Full Text PDF

Proteins are key to all cellular processes and their structure is important in understanding their function and evolution. Sequence-based predictions of protein structures have increased in accuracy, and over 214 million predicted structures are available in the AlphaFold database. However, studying protein structures at this scale requires highly efficient methods.

View Article and Find Full Text PDF

Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis. Upon pathogen recognition by NLR proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore forming proteins to and induce pyroptotic cell death. Here we show that CARD-like domains are present in defense systems that protect bacteria against phage.

View Article and Find Full Text PDF

Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid spp.

View Article and Find Full Text PDF

The cell-autonomous innate immune system enables animal cells to resist viral infection. This system comprises an array of sensors that, after detecting viral molecules, activate the expression of antiviral proteins and the interferon response. The repertoire of immune sensors and antiviral proteins has long been considered to be derived from extensive evolutionary innovation in vertebrates, but new data challenge this dogma.

View Article and Find Full Text PDF

The cyclic oligonucleotide-based antiphage signalling system (CBASS) and the pyrimidine cyclase system for antiphage resistance (Pycsar) are antiphage defence systems in diverse bacteria that use cyclic nucleotide signals to induce cell death and prevent viral propagation. Phages use several strategies to defeat host CRISPR and restriction-modification systems, but no mechanisms are known to evade CBASS and Pycsar immunity. Here we show that phages encode anti-CBASS (Acb) and anti-Pycsar (Apyc) proteins that counteract defence by specifically degrading cyclic nucleotide signals that activate host immunity.

View Article and Find Full Text PDF

Gasdermin proteins form large membrane pores in human cells that release immune cytokines and induce lytic cell death. Gasdermin pore formation is triggered by caspase-mediated cleavage during inflammasome signaling and is critical for defense against pathogens and cancer. We discovered gasdermin homologs encoded in bacteria that defended against phages and executed cell death.

View Article and Find Full Text PDF

Unicellular eukaryotes are an integral part of many microbial ecosystems where they interact with their surrounding prokaryotic community-either as predators or as mutualists. Within the rumen, one of the most complex host-associated microbial habitats, ciliate protozoa represent the main micro-eukaryotes, accounting for up to 50% of the microbial biomass. Nonetheless, the extent of the ecological effect of protozoa on the microbial community and on the rumen metabolic output remains largely understudied.

View Article and Find Full Text PDF

Extra-chromosomal genetic elements are important drivers of evolutionary transformations and ecological adaptations in prokaryotes with their evolutionary success often depending on their 'utility' to the host. Examples are plasmids encoding antibiotic resistance genes, which are known to proliferate in the presence of antibiotics. Plasmids carrying an essential host function are recognized as permanent residents in their host.

View Article and Find Full Text PDF

Plasmids are genetic elements that colonize and replicate in prokaryotic cells (Box 1). They are considered a major driving force of prokaryote evolution, as they can migrate between populations, making them potent agents of lateral DNA transfer and microbial warfare. The importance of plasmids goes beyond microbial evolution, as they are widely used as vectors for genetic engineering in basic research (e.

View Article and Find Full Text PDF

Plasmids are autonomously replicating genetic elements that are ubiquitous in all taxa and habitats where they constitute an integral part of microbial genomes. The stable inheritance of plasmids depends on their segregation during cell division and their long-term persistence in a host population is thought to largely depend on their impact on the host fitness. Nonetheless, many plasmids found in nature are lacking a clear trait that is advantageous to their host; the determinants of plasmid evolutionary success in the absence of plasmid benefit to the host remain understudied.

View Article and Find Full Text PDF

Extra-chromosomal genetic elements are important drivers of bacterial evolution, and their evolutionary success depends on positive selection for the genes they encode. Examples are plasmids encoding antibiotic resistance genes that are maintained in the presence of antibiotics (e.g.

View Article and Find Full Text PDF

Plasmids play a major role in microbial ecology and evolution as vehicles of lateral gene transfer and reservoirs of accessory gene functions in microbial populations. This is especially the case under rapidly changing environments such as fluctuating antibiotics exposure. We recently showed that plasmids maintain antibiotic resistance genes in Escherichia coli without positive selection for the plasmid presence.

View Article and Find Full Text PDF

Population bottlenecks leading to a drastic reduction of the population size are common in the evolutionary dynamics of natural populations; their occurrence is known to have implications for genome evolution due to genetic drift, the consequent reduction in genetic diversity, and the rate of adaptation. Nevertheless, an empirical characterization of the effect of population bottleneck size on evolutionary dynamics of bacteria is currently lacking. In this study, we show that selective conditions have a stronger effect on the evolutionary history of bacteria in comparison to population bottlenecks.

View Article and Find Full Text PDF

Symbiotic interactions between eukaryotes and prokaryotes are widespread in nature. Here we offer a conceptual framework to study the evolutionary origins and ecological circumstances of species in beneficial symbiosis. We posit that mutual symbiotic interactions are well described by three elements: a currency, the mechanism of currency exchange, and mechanisms of symbiont inheritance.

View Article and Find Full Text PDF

Plasmid acquisition is an important mechanism of rapid adaptation and niche expansion in prokaryotes. Positive selection for plasmid-coded functions is a major driver of plasmid evolution, while plasmids that do not confer a selective advantage are considered costly and expected to go extinct. Yet, plasmids are ubiquitous in nature, and their persistence remains an evolutionary paradox.

View Article and Find Full Text PDF

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature.

View Article and Find Full Text PDF

Benthic foraminifera populate a diverse range of marine habitats. Their ability to use alternative electron acceptors-nitrate (NO) or oxygen (O)-makes them important mediators of benthic nitrogen cycling. Nevertheless, the metabolic scaling of the two alternative respiration pathways and the environmental determinants of foraminiferal denitrification rates are yet unknown.

View Article and Find Full Text PDF

The ubiquity of plasmids in all prokaryotic phyla and habitats and their ability to transfer between cells marks them as prominent constituents of prokaryotic genomes. Many plasmids are found in their host cell in multiple copies. This leads to an increased mutational supply of plasmid-encoded genes and genetically heterogeneous plasmid genomes.

View Article and Find Full Text PDF

Benthic foraminifera are unicellular eukaryotes inhabiting sediments of aquatic environments. Several species were shown to store and use nitrate for complete denitrification, a unique energy metabolism among eukaryotes. The population of benthic foraminifera reaches high densities in oxygen-depleted marine habitats, where they play a key role in the marine nitrogen cycle.

View Article and Find Full Text PDF

Most eukaryotic species are colonized by a microbial community - the microbiota - that is acquired during early life stages and is critical to host development and health. Much research has focused on the microbiota biodiversity during the host life, however, empirical data on the basic ecological principles that govern microbiota assembly is lacking. Here we quantify the contribution of colonizer order, arrival time and colonization history to microbiota assembly on a host.

View Article and Find Full Text PDF

Plasmids are extra-chromosomal genetic elements whose ecology and evolution depend on their genetic repertoire and interaction with the host. We review the events that lead to transitions between plasmid lifestyle modes - invasion, host range, plasmid persistence and adaptation - from a plasmid perspective. Plasmid lifestyle is determined by various traits, including mobility, stability and indispensability that vary in their magnitude.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqn1d4d2a12insmtqb25cej9rltjqrn77): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once