This research aims to conduct a comparative investigation of the role played by microaeration and sludge recirculation in the novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) for enhancing pharmaceutical removal from building wastewater. Three AnBB-MBRs - R1: AnBB-MBR, R2: AnBB-MBR with microaeration and R3: AnBB-MBR with microaeration and sludge recirculation - were operated simultaneously to remove Ciprofloxacin (CIP), Caffeine (CAF), Sulfamethoxazole (SMX) and Diclofenac (DCF) from real building wastewater at the hydraulic retention time (HRT) of 30 h for 115 days. From the removal profiles of the targeted pharmaceuticals in the AnBB-MBRs, it was found that the fixed-film compartment (C1) could significantly reduce the targeted pharmaceuticals.
View Article and Find Full Text PDFA novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) with microaeration of 0.62 L/L was developed to improve VFA and nitrogen removal from building wastewater. Three different membrane bioreactor systems - R1: AnBB-MBR (without microaeration); R2: AnBB-MBR with microaeration; and R3: AnBB-MBR with integrated microaeration and sludge recirculation - were operated in parallel at the same hydraulic retention time of 20 h and sludge retention time of 100 d.
View Article and Find Full Text PDFA novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) was developed to treat industrial liquor condensate. In order to minimize membrane fouling, three different reactor configurations of R1:No media (anaerobic baffled MBR), R2:FF (Fixed Film AnBB-MBR) and R3:FF + MVB (Fixed Film and Moving Bed AnBB-MBR) were evaluated at the same operating hydraulic retention time of 3 days. The specific fouling rates of the ceramic membranes were 0.
View Article and Find Full Text PDF