A cloth-based analytical device combined with electrochemiluminescence detection (CAD-ECL) was described for rapid determination of histamine (HA). The CAD device was produced by screen-printing a conductive carbon ink onto a patterned hydrophobic electrochemical microfluidic chamber to fabricate the three-carbon electrode system on a single hydrophilic cloth. The introduction of carbon nanodots linked to chitosan on the working carbon electrode surface enhanced the catalytic performance and overcame the resistance of the cotton fiber material.
View Article and Find Full Text PDFThe design and fabrication of a simple 3D-printed platform with embedded electrochemiluminescence (ECL) detection for sibutramine determination is described. The microfluidic platform was fabricated by the fused deposition 3D-printing technique with polylactic acid filament, facilitated by computer-aided design (CAD). A three-electrode system was integrated into the device using graphene carbon paste as a working electrode, Ag/AgCl wire as a reference, and a graphite rod as a counter electrode.
View Article and Find Full Text PDFThe fabrication of a cloth-based analytical device combined with electrochemiluminescence detection was established for the rapid determination of salbutamol in pork samples. A hand-coloring method to pattern the hydrophobic chamber was employed, and a three-carbon electrode system was subsequently screen printed onto the patterned cotton chamber. Further modifications of the working electrode surface were conducted using platinum nanoparticles and chitosan solution.
View Article and Find Full Text PDFAccording to the American Society of Anesthesiologists Closed Claims Database, one of three drug-related errors is the result administrating an incorrect dose. Directly measuring drug concentration removes the uncertainty in the dose-concentration relationship and addresses inter- and intra-subject variabilities that affect the pharmacokinetics of anesthetics. Here we describe a dual-analyte microcatheter-based electrochemical sensor capable of simultaneous real-time continuous monitoring of fentanyl (FTN) and propofol (PPF) drugs simultaneously in the operating rooms.
View Article and Find Full Text PDFUltra-high-performance liquid chromatography (UHPLC) coupled with a cobalt phthalocyanine screen-printed carbon electrode (CoPc-SPCE) was developed and validated for quantitative analysis of ethylenethiourea (ETU) and propylenethiourea (PTU). CoPC-SPCE provided high catalytic properties for ETU and PTU oxidation. This fabricated electrode is inexpensive, disposable, and easy to prepare by an in-house screen-printing technique.
View Article and Find Full Text PDFDiabetic ketoacidosis (DKA), a severe complication of diabetes mellitus with potentially fatal consequences, is characterized by hyperglycemia and metabolic acidosis due to the accumulation of ketone bodies, which requires people with diabetes to monitor both glucose and ketone bodies. However, despite major advances in diabetes management mainly since the emergence of new-generation continuous glucose monitoring (CGM) devices capable of in vivo monitoring of glucose directly in the interstitial fluid (ISF), the continuous monitoring of ketone bodies is yet to be addressed. Here, we present the first use of a real-time continuous ketone bodies monitoring (CKM) microneedle platform.
View Article and Find Full Text PDFThis paper reports a new approach to enhance the electrogenerated chemiluminescence (ECL) of the tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) system using resonance energy transfer with l-cysteine-capped cadmium telluride quantum dots (CdTe-QDs) in aqueous solution. The oxidative peak signal of Ru(bpy)3(2+) occurred at a voltage of 1.10V when the potential was cycled between 0.
View Article and Find Full Text PDFA pervaporation-flow injection (PFI) method was developed for the determination of sulfite in selected food samples using a copper hexacyanoferrate-carbon nanotube (CuHCF-CNT)-modified carbon paste electrode. The electrochemical behavior of the modified electrode was observed using cyclic voltammetry in comparison to a CuHCF-modified carbon paste electrode and a bare carbon paste electrode at a scan rate of 100mVs(-1) in 0.10M KNO(3).
View Article and Find Full Text PDFA bilayer surface coating, prepared by electrodepositing ruthenium oxide (RuOx) onto a carbon nanotube (CNT) layer, offers dramatic improvements in the stability and sensitivity of voltammetric and amperometric measurements of insulin compared to the individual (CNT or RuOx) coated electrodes. The enhanced electrocatalytic activity towards insulin is indicated from lowering the potential of the oxidation process (starting around 0.35 versus Ag/AgCl) and the substantially higher sensitivity over the entire potential range.
View Article and Find Full Text PDFA highly sensitive electrochemical assay of the peroxide-based explosives triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) at a Prussian-blue (PB) modified electrode is reported. The method involves photochemical degradation of the peroxide explosives and a low potential (0.0 V) electrocatalytic amperometric sensing of the generated hydrogen peroxide at the PB transducer and offers nanomolar detection limits following a short (15 s) irradiation times.
View Article and Find Full Text PDFThe design and development of a screen printed carbon electrode (SPCE) on a polyvinyl chloride substrate as a disposable sensor is described. Six configurations were designed on silk screen frames. The SPCEs were printed with four inks: silver ink as the conducting track, carbon ink as the working and counter electrodes, silver/silver chloride ink as the reference electrode and insulating ink as the insulator layer.
View Article and Find Full Text PDFHere we present a highly sensitive, rapid and simple electrochemical assay for glycosidases based on treatment of the glycosidase with the appropriate p-nitrophenyl glycoside and anodic detection of released p-nitrophenol. The attractive characteristics of the new bioassay should facilitate advanced glycomic research and routine clinical diagnostics since glycosidases are associated with various diseases.
View Article and Find Full Text PDF