Publications by authors named "Tanima Dutta"

Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages.

View Article and Find Full Text PDF

is a unicellular, intracellular protozoan parasite, and the causative agent of malaria in humans, a deadly vector borne infectious disease. A key phase of malaria pathology, is the invasion of human erythrocytes, resulting in drastic remodeling by exported parasite proteins, including molecular chaperones and co-chaperones. The survival of the parasite within the human host is mediated by heat shock protein 70s (PfHsp70s) and J domain proteins (PfJDPs), functioning as chaperones-co-chaperones partnerships.

View Article and Find Full Text PDF

The Internet of Things (IoT) in the healthcare system is rapidly changing from the conventional hospital and concentrated specialist behavior to a distributed, patient-centric approach. With the advancement of new techniques, a patient needs sophisticated healthcare requirements. IoT-enabled intelligent health monitoring system with sensors and devices is a patient analysis technique to monitor the patient 24 h a day.

View Article and Find Full Text PDF

The heat shock protein 40 (Hsp40) family, also called J domain proteins (JDPs), regulate their Hsp70 partners by ensuring that they are engaging the right substrate at the right time and in the right location within the cell. A number of JDPs can serve as co-chaperone for a particular Hsp70, and so one generally finds many more JDPs than Hsp70s in the cell. In humans there are 13 Hsp70s and 49 JDPs.

View Article and Find Full Text PDF

Heat shock protein 90 (Hsp90) is one of the major guardians of cellular protein homeostasis, through its specialized molecular chaperone properties. While Hsp90 has been extensively studied in many prokaryotic and higher eukaryotic model organisms, its structural, functional, and biological properties in parasitic protozoans are less well defined. Hsp90 collaborates with a wide range of co-chaperones that fine-tune its protein folding pathway.

View Article and Find Full Text PDF

Coronavirus outbreak is one of the challenging pandemics for the entire human population on Earth. Techniques, such as the isolation of infected people and maintaining social distancing, are the only preventive measures against the pandemic. The actual estimation of the number of infected peoples with limited data is an indeterminate problem faced by data scientists.

View Article and Find Full Text PDF

Plasmodium falciparum has dedicated an unusually large proportion of its genome to molecular chaperones (2% of all genes), with the heat shock protein 40 (Hsp40) family (now called J domain proteins, JDPs) exhibiting evolutionary radiation into 49 members. A large number of the P. falciparum JDPs (PfJDPs) are predicted to be exported, with certain members shown experimentally to be present in the erythrocyte cytosol (PFA0660w and PFE0055c) or erythrocyte membrane (ring-infected erythrocyte surface antigen, RESA).

View Article and Find Full Text PDF

Plasmodium falciparum is a unicellular protozoan parasite and causative agent of a severe form of malaria in humans, accounting for very high worldwide fatality rates. At the molecular level, survival of the parasite within the human host is mediated by P. falciparum heat shock proteins (PfHsps) that provide protection during febrile episodes.

View Article and Find Full Text PDF

Growth at high temperatures is one of the desired features for industrial applications of microbes, as it results in decrease in contamination and enhanced solubility of certain substrates. In this study, it is demonstrated that heterologous expression of a wheat cyclophilin, TaCypA-1, confers thermotolerance to . The TaCypA-1 possesses peptidyl-prolyl isomerase (PPIase) activity that catalyses to isomerization of the peptidyl prolyl bonds, a rate limiting step in protein folding.

View Article and Find Full Text PDF

Cyclophilins, which bind to immunosuppressant cyclosporin A (CsA), are ubiquitous proteins and constitute a multigene family in higher organisms. Several members of this family are reported to catalyze cis-trans isomerisation of the peptidyl-prolyl bond, which is a rate limiting step in protein folding. The physiological role of these proteins in plants, with few exceptions, is still a matter of speculation.

View Article and Find Full Text PDF

Background: Cyclophilins (CyP), conserved in all genera, are known to have regulatory responses of various cellular processes including stress tolerance. Interestingly, CyP has a crucial role as peptidyl-prolyl cis-trans isomerases (PPIases). Our earlier in silico based approach resulted into the identification of cyclophilin family from rice, Arabidopsis and yeast.

View Article and Find Full Text PDF

Cyclophilins belong to a family of proteins that bind to the immunosuppressive drug cyclosporin A (CsA). Several members of this protein family catalyze the cis-trans isomerization of peptide bonds preceding prolyl residues. The present study describes the biochemical and structural characteristics of a cytosolic cyclophilin (TaCypA-1) cloned from wheat (Triticum aestivum L.

View Article and Find Full Text PDF

In the present study, storage proteins from five different wheat cultivars were extracted, fractionated and evaluated for their accumulation at different stages of development. SDS-PAGE analysis revealed that the accumulation of high molecular weight glutenin subunits was cultivar and stage dependent. However, low molecular weight glutenin subunits' accumulation was not altered significantly after 16days post anthesis in any of the cultivars.

View Article and Find Full Text PDF