Global surface waters are in a bad ecological and chemical state, which has detrimental effects on entire ecosystems. To prevent further deterioration of ecosystems and ecosystem services, it is vital to minimize environmental pollution and come up with ways to keep surface water healthy and clean. Recently, photogranules have emerged as a promising platform for wastewater treatment to remove organic matter and nutrients with reduced or eliminated mechanical aeration, while also facilitating CO capture and production of various bioproducts.
View Article and Find Full Text PDFThere is growing evidence of negative impacts of antidepressants on behavior of aquatic non-target organisms. Accurate environmental risk assessment requires an understanding of whether antidepressants with similar modes of action have consistent negative impacts. Here, we tested the effect of acute exposure to two antidepressants, fluoxetine and venlafaxine (0-50 µg/L), on the behavior of non-target organism, i.
View Article and Find Full Text PDFSingle microalgae species are effective at the removal of various organic micropollutants (OMPs), however increased species diversity might enhance this removal. Sixteen OMPs were added to 2 continuous photobioreactors, one inoculated with Chlorella sorokiniana and the other with a microalgal-bacterial community, for 112 d under natural light. Three media were sequentially used in 3 Periods: I) synthetic sewage (d 0-28), II) 10x diluted anaerobically digested black water (AnBW) (d 28-94) and III) 5x diluted AnBW (d 94-112).
View Article and Find Full Text PDFMicroalgae-based technologies can be used for the removal of organic micropollutants (OMPs) from different types of wastewater. However, the effect of wastewater characteristics on the removal is still poorly understood. In this study, the removal of sixteen OMPs by Chlorella sorokiniana, cultivated in three types of wastewater (anaerobically digested black water (AnBW), municipal wastewater (MW), and secondary clarified effluent (SCE)), were assessed.
View Article and Find Full Text PDFPhotogranules are spherical aggregates formed of complex phototrophic ecosystems with potential for "aeration-free" wastewater treatment. Photogranules from a sequencing batch reactor were investigated by fluorescence microscopy, 16S/18S rRNA gene amplicon sequencing, microsensors, and stable- and radioisotope incubations to determine the granules' composition, nutrient distribution, and light, carbon, and nitrogen budgets. The photogranules were biologically and chemically stratified, with filamentous cyanobacteria arranged in discrete layers and forming a scaffold to which other organisms were attached.
View Article and Find Full Text PDFPhotogranules are a novel wastewater treatment technology that can utilize the sun's energy to treat water with lower energy input and have great potential for nutrient recovery applications. They have been proven to efficiently remove nitrogen and carbon but show lower conversion rates for phosphorus compared to established treatment systems, such as aerobic granular sludge. In this study, we successfully introduced polyphosphate accumulating organisms (PAOs) to an established photogranular culture.
View Article and Find Full Text PDFWastewater characteristics can vary significantly, and in some municipal wastewaters the N:P ratio is as low as 5 resulting in nitrogen-limiting conditions. In this study, the microbial community, function, and morphology of photogranules under nitrogen-replete (N+) and limiting (N-) conditions was assessed in sequencing batch reactors. Photogranules under N- condition were nitrogen deprived 2/3 of a batch cycle duration.
View Article and Find Full Text PDFOrganic micropollutants (OMPs) need to be removed from wastewater as they can negatively affect aquatic organisms. It has been demonstrated that microalgae-based technologies are efficient in removing OMPs from wastewater. In this study, the removal processes and kinetics of six persistent OMPs (diclofenac, clarithromycin, benzotriazole, metoprolol, carbamazepine and mecoprop) were studied during cultivation of Scenedesmus obliquus in batch mode.
View Article and Find Full Text PDFWastewater is considered a renewable resource water and energy. An advantage of decentralized sanitation systems is the separation of the blackwater (BW) stream, contaminated with human pathogens, from the remaining household water. However, the composition and functions of the microbial community in BW are not known.
View Article and Find Full Text PDFThe demand for systems that efficiently and sustainably recover value-added compounds and materials from waste streams is a major challenge. The use of wastewater as a source for recovery of carbon and nutrients is an attractive and sustainable alternative. In this study, anaerobically treated black water was treated in photobioreactors (PBRs) inoculated with Chlorella sorokiniana, and the process was investigated in terms of phosphorus and nitrogen removal, biomass growth, and the removal of pathogens.
View Article and Find Full Text PDFMicroalga Dunaliella salina is known for its carotenogenesis. At the same time, it can also produce high-quality protein. The optimal conditions for D.
View Article and Find Full Text PDFGlobal stores of important resources such as phosphorus (P) are being rapidly depleted, while the excessive use of nutrients has led to the enrichment of surface waters worldwide. Ideally, nutrients would be recovered from wastewater, which will not only prevent eutrophication but also provide access to alternative nutrient stores. Current state-of-the-art wastewater treatment technologies are effective in removing these nutrients from wastewater, yet they can only recover P and often in an insufficient way.
View Article and Find Full Text PDFMicropollutant removal in an algal treatment system fed with source separated wastewater streams was studied. Batch experiments with the microalgae Chlorella sorokiniana grown on urine, anaerobically treated black water and synthetic urine were performed to assess the removal of six spiked pharmaceuticals (diclofenac, ibuprofen, paracetamol, metoprolol, carbamazepine and trimethoprim). Additionally, incorporation of these pharmaceuticals and three estrogens (estrone, 17β-estradiol and ethinylestradiol) into algal biomass was studied.
View Article and Find Full Text PDF