Publications by authors named "Tania Prieto"

π-Conjugated materials are highly attractive owing to their unique optical and electronic properties. Covalent organic frameworks (COFs) offer a great opportunity for precise arrangement of building units in a π-conjugated crystalline matrix and tuning of the properties through choice of functionalities or post-synthetic modification. With this review, we aim at summarizing both the most representative as well as emerging strategies for the synthesis of π-conjugated COFs.

View Article and Find Full Text PDF

An athermal approach to mRNA enrichment from total RNA using a self-immolative thioester linked nucleic acids (TENA) is described. Oligo(thymine) (oT) TENA has a six-atom spacing between bases which allowed TENA to selectively base-pair with polyadenine RNA. As a result of the neutral backbone of TENA and the hydrophobicity of the octanethiol end group, oT TENA is water insoluble and efficiently pulled down 93±2 % of EGFP mRNA at a concentration of 10 ng μL .

View Article and Find Full Text PDF

Alkylammonium cation affinities of 64 nitrogen-containing organobases, as well as the respective proton transfer processes from the alkylammonium cations to the base, have been computed in the gas phase by using DFT methods. The guanidine bases show the highest proton transfer values (191.9-233 kJ mol ) whereas the cis-2,2'-biimidazole presents the largest affinity towards the alkylammonium cations (>200 kJ mol ) values.

View Article and Find Full Text PDF

Enrichment of mRNA is a key step in a number of molecular biology techniques, particularly in the rapidly growing field of transcriptomics. Currently, mRNA is isolated using oligo(thymine) DNA (oligo(dT)) immobilized on solid supports, which binds to the poly(A) tail of mRNA to pull the mRNA out of solution through the use of magnets or centrifugal filters. Here, a simple method to isolate mRNA by complexing it with synthetic click nucleic acids (CNAs) is described.

View Article and Find Full Text PDF

Click nucleic acids (CNAs) are a new, low-cost class of xeno nucleic acid (XNA) oligonucleotides synthesized by an efficient and scalable thiol-ene polymerization. In this work, a thorough characterization of oligo(thymine) CNA-oligo(adenine) DNA ((dA)) hybridization was performed to guide the future implementation of CNAs in applications that rely on sequence-specific interactions. Microscale thermophoresis provided a convenient platform to rapidly and systematically investigate the effects of several factors (i.

View Article and Find Full Text PDF