Publications by authors named "Tania Poroa"

Intra-oral stents (including mouth-pieces and bite blocks) can be used to displace adjacent non-involved oral tissue and reduce radiation side effects from radiotherapy treatments for head-and-neck cancer. In this study, a modular and customisable 3D printed intra-oral stent was designed, fabricated and evaluated, to utilise the advantages of the 3D printing process without the interruption of clinical workflow associated with printing time. The stent design used a central mouth-opening and tongue-depressing main piece, with optional cheek displacement pieces in three different sizes, plus an anchor point for moulding silicone to fit individual patients' teeth.

View Article and Find Full Text PDF

Introduction: Optical three-dimensional scanning devices can produce geometrically accurate, high-resolution models of patients suitable for clinical use. This article describes the use of a metrology-grade structured light scanner for the design and production of radiotherapy medical devices and synthetic water-equivalent computer tomography images.

Methods: Following commissioning of the device by scanning objects of known properties, 173 scans were performed on 26 volunteers, with observations of subjects and operators collected.

View Article and Find Full Text PDF

As head-and-neck radiotherapy treatments become more complex and sophisticated, and the need to control and stabilise the positioning of intra-oral anatomy becomes more important, leading the increasing use of oral positioning stents during head-and-neck radiotherapy simulation and delivery. As an alternative to the established practice of creating oral positioning stents using wax, this study investigated the use of a 3D printing technique. An Ender 5 3D printer (Creality 3D, Shenzhen, China) was used, with PLA+ "food-safe" polylactic acid filament (3D Fillies, Dandenong South, Australia), to produce a low-density 3D printed duplicate of a conventional wax stent.

View Article and Find Full Text PDF