This article presents a new and easily implementable method to quantify the so-called coupling distance between the law of a time series and the law of a differential equation driven by Markovian additive jump noise with heavy-tailed jumps, such as α-stable Lévy flights. Coupling distances measure the proximity of the empirical law of the tails of the jump increments and a given power law distribution. In particular, they yield an upper bound for the distance of the respective laws on path space.
View Article and Find Full Text PDF