Publications by authors named "Tania Kim"

Understanding the ability of internal- and external-infesting stored product insects to vector microbes is important for estimating the relative risk that insects pose to postharvest commodities as they move between habitat patches and in the landscape. Thus, the aim of the current study was to evaluate and compare the microbial growth in novel food patches at different dispersal periods by different populations of (e.g.

View Article and Find Full Text PDF

Border crops can increase beneficial insect biodiversity within agricultural fields by supplementing insects with food and nesting resources. However, the effectiveness of border crops relies on insect movement between adjacent habitats and some insects might consider habitat boundaries as barriers. Therefore, understanding insect movement between habitats is needed to determine the effectiveness of border crops for ecosystem services such as pest control within agricultural habitats.

View Article and Find Full Text PDF

Organisms that immigrate into a recipient habitat generate a movement pattern that affects local population dynamics and the environment. Spillover is the pattern of unidirectional movement from a donor habitat to a different, adjacent recipient habitat. However, ecological definitions are often generalized to include any cross-habitat movement, which limits within- and cross-discipline collaboration.

View Article and Find Full Text PDF

The invasive larger grain borer (Prostephanus truncatus) and the maize weevil (Sitophilus zeamais) co-occur in many regions of the world. While competition between these 2 species has been studied extensively, there is little information on spatial dispersion patterns in bulk storage of grain. To evaluate potential overlap in realized niche, we evaluated the short-term spatial dispersion behavior of P.

View Article and Find Full Text PDF

Insects and microbes are known to interact in a variety of ways at food facilities, compounding damage. However, little research has explicated how specific common fungal species affect the behavior of the cosmopolitan secondary stored product pest, Lasioderma serricorne. Enhanced knowledge about attraction to microbially-produced volatile organic compounds (MVOCs) may be used to manipulate insect behavior.

View Article and Find Full Text PDF

Although some research has investigated the interactions among stored product insects and microbes, little research has examined how specific fungal life stages affect volatile emissions in grain and linked it to the behavior of Sitophilus oryzae, the cosmopolitan rice weevil. Thus, our goals were to 1) isolate, culture, and identify two fungal life stages of Aspergillus flavus, 2) characterize the volatile emissions from grain inoculated by each fungal morphotype, and 3) understand how microbially-produced volatile organic compounds (MVOCs) from each fungal morphotype affect foraging, attraction, and preference by S. oryzae.

View Article and Find Full Text PDF

Over the past century, habitat loss from agricultural intensification has contributed to pollinator decline. One way to mitigate the harmful effects of agricultural intensification is through the re-introduction of native flowering plants as border strips that provide supplemental floral and nesting resources to pollinators. However, border crop species vary in bloom period and flower densities, and are thus likely to attract different suites of pollinator species.

View Article and Find Full Text PDF

There has been a dearth of research elucidating the behavioral effect of microbially-produced volatile organic compounds on insects in postharvest agriculture. Demonstrating attraction to MVOC's by stored product insects would provide an additional source of unique behaviorally-relevant stimuli to protect postharvest commodities at food facilities. Here, we assessed the behavioral response of a primary (Rhyzopertha dominica) and secondary (Tribolium castaneum) grain pest to bouquets of volatiles produced by whole wheat that were untempered, or tempered to 12%, 15%, or 19% grain moisture and incubated for 9, 18, or 27 days.

View Article and Find Full Text PDF

Microbes are ubiquitous and play important ecological roles in a variety of habitats. While research has been largely focused on arthropods and microbes separately in the post-harvest supply chain, less attention has been paid to their interactions with each other. Up to this point, there has been no attempt to systematically describe the patterns of behavioral responses by stored-product insects to microbially produced volatile organic compounds (MVOCs).

View Article and Find Full Text PDF

The convergent lady beetle, Hippodamia convergens Guerin-Meneville, is a specialized predator of cereal aphids on the High Plains, completing its first generation each year in winter wheat, the resulting adults dispersing into summer crops and producing additional generations, contingent on the availability of aphids. In the present study, we tested the collective value of supplementary plant resources (sugars, pollen, and seedling wheat leaves), and small amounts of alternative prey, eggs of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae), all provided together, for improving beetle life history and reproductive success even when suitable prey, Schizaphis graminum (Rondani) (Hemiptera: Aphididae), were provided ad libitum. Although a monotypic diet of S.

View Article and Find Full Text PDF

Recent synthesis studies have shown inconsistent responses of crop pests to landscape composition, imposing a fundamental limit to our capacity to design sustainable crop protection strategies to reduce yield losses caused by insect pests. Using a global dataset composed of 5242 observations encompassing 48 agricultural pest species and 26 crop species, we tested the role of pest traits (exotic status, host breadth and habitat breadth) and environmental context (crop type, range in landscape gradient and climate) in modifying the pest response to increasing semi-natural habitats in the surrounding landscape. For natives, increasing semi-natural habitats decreased the abundance of pests that exploit only crop habitats or that are highly polyphagous.

View Article and Find Full Text PDF

Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change.

View Article and Find Full Text PDF

Disturbances have long been recognized as important forces for structuring natural communities but their effects on trophic structure are not well understood, particularly in terrestrial systems. This is in part because quantifying trophic linkages is a challenge, especially for small organisms with cryptic feeding behaviors such as insects, and often relies on conducting labor-intensive feeding trials or extensive observations in the field. In this study, we used stable isotopes of carbon and nitrogen to examine how disturbance (annual biomass harvesting) in tallgrass prairies affected the trophic position, trophic range, and niche space of ants, a widespread grassland consumer.

View Article and Find Full Text PDF
Article Synopsis
  • - The concept that noncrop habitats can improve pest control while supporting biodiversity has gained traction, but the results are inconsistent across different studies.
  • - An analysis of 132 studies showed that while landscape composition often influenced pest and natural enemy populations, the outcomes varied significantly, leading to no definitive improvement in overall pest management.
  • - The findings suggest that noncrop habitats do not uniformly enhance pest control, indicating a need for better guidelines to help farmers understand when habitat conservation will actually benefit crop yields.
View Article and Find Full Text PDF

Neighboring plants can decrease or increase each other's likelihood of damage from herbivores through associational resistance or susceptibility, respectively. Associational effects (AE) can transpire through changes in herbivore or plant traits that affect herbivore movement, densities, and feeding behaviors to ultimately affect plant damage. While much work has focused on understanding the mechanisms that underlie associational effects, we know little about how these mechanisms are influenced by neighborhood composition, i.

View Article and Find Full Text PDF

Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta) as functions of resource density.

View Article and Find Full Text PDF

Neighboring plants can affect the likelihood that a focal plant is attacked by herbivores. Both the density of conspecific neighbors (resource concentration or dilution effects) and the relative density of heterospecific neighbors (associational effects or effects of neighbor frequency) within the local neighborhood can affect herbivore load and plant damage. Understanding how these neighborhood effects influence processes such as plant competition or natural selection on plant resistance traits will require knowing how both plant density and frequency affect damage, but previous studies have generally confounded density and frequency effects.

View Article and Find Full Text PDF

The strength and prevalence of trophic cascades, defined as positive, indirect effects of natural enemies (predatory and parasitic arthropods) on plants, is highly variable in agroecosystems. This variation may in part be due to the spatial or landscape context in which hese trophic cascades occur. In 2011 and 2012, we conducted a natural enemy exclusion experiment in soybean fields along a gradient of landscape composition across southern Wisconsin and Michigan, USA.

View Article and Find Full Text PDF

Insect herbivores can affect plant abundance and community composition, and theory suggests that herbivores influence plant communities by altering interspecific interactions among plants. Because the outcome of interspecific interactions is influenced by the per capita competitive ability of plants, density dependence, and intrinsic rates of increase, measuring herbivore effects on all these processes is necessary to understand the mechanisms by which herbivores influence plant communities. We fit alternative competition models to data from a response surface experiment conducted over four years to examine how herbivores affected the outcome of competition between two perennial plants, Solidago altissima and Solanum carolinense.

View Article and Find Full Text PDF

Disturbance is a major source of spatial and temporal heterogeneity. In fire-maintained systems, disturbance by fire is often used as a management tool to increase biological diversity, restore degraded habitats, and reduce pest outbreaks. Much attention has been given to how plant communities recover from fire, but relatively few studies have examined post-fire responses of higher order species, such as insect herbivores.

View Article and Find Full Text PDF