Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.
View Article and Find Full Text PDFThis review completely covers the various aspects of hydroxyapatite (HAp) nanoparticles and their role in different biological situations, and provides the surface and interface contents on (i) hydroxyapatite nanoparticles and their hybridization with organic molecules, (ii) surface designing of hydroxyapatite nanoparticles to provide their biocompatibility and photofunction, and (iii) coating technology of hydroxyapatite nanoparticles. In particular, we summarized how the HAp nanoparticles interact with the different ions and molecules and highlighted the potential for hybridization between HAp nanoparticles and organic molecules, which is driven by the interactions of the HAp nanoparticle surface ions with several functional groups of biological molecules. In addition, we highlighted the studies focusing on the interfacial interactions between the HAp nanoparticles and proteins for exploring the enhanced biocompatibility.
View Article and Find Full Text PDFIn this review, the current status of the influence of added ions (i.e., SiO, CO, etc.
View Article and Find Full Text PDFAutogenous bone and metallic implant grafting has been used to repair and regenerate bone defects. However, there are still many unresolved problems. It is suggested that bioceramic nanoparticles should be developed and designed to promote effective bone regeneration.
View Article and Find Full Text PDFBiological hydroxyapatite (HA) contains the different minor ions which favour its bio-reactivity in vivo. In this study, the preparation of HA particles containing both silicate and carbonate ions under the presence of sodium silicate was investigated, and the physicochemical properties were evaluated according to the contents and states of silicate and carbonate ions. The increment in the silicate ion reduced the crystallinity and expanded the crystalline size along with -axis.
View Article and Find Full Text PDFThe synthesized elliptical hydroxyapatite (E-HAp) and needle-like HAp (N-HAp) nanoparticles (NPs) were electrophoretically deposited on a gold (Au) substrate. A comparative study of the hydration layers on E-HAp, N-HAp, and Au films was achieved to investigate the interfacial effect of the hydration layers on the conformation of the adsorbed fibrinogen (Fgn) and fibroblast adhesion properties. As a result, the ratios of three types of hydration layer states (free water, intermediate water, nonfreezing water) analyzed by a Fourier transform infrared (FT-IR) spectral deconvolution of the O-H stretching absorption band were investigated.
View Article and Find Full Text PDF