This research explores the relationship between Decent Work (DW) and Burnout in Portuguese and Brazilian academic personnel. We focus on identifying profiles resulting from the relationship between these variables. Seven hundred twenty-seven participants composed the sample (Portuguese = 334; Brazilian = 393), and data were collected online using the Decent Work Questionnaire (DWQ) and the Personal Burnout subscale from the Copenhagen Burnout Inventory (CBI).
View Article and Find Full Text PDFBackground: The Decent Work (DW) concept, proposed by the International Labour Organization, can be enriched by the contributions of a Work, Organizational and Personnel Psychology (WOPP) perspective. Namely, it would be important to relate DW perceptions to the main concepts in the WOPP realm. Understanding these relations would expand our knowledge of the nomological network of the DW concept and of its practical implications.
View Article and Find Full Text PDFInsulin-like peptide 3 (INSL3) is one of 10 members of the human relaxin-insulin superfamily of peptides. It is a peptide hormone that is expressed by fetal and postnatal testicular Leydig cells and postnatal ovarian thecal cells. It mediates testicular descent during fetal life and suppresses sperm apoptosis in adult males, whereas, in females, it causes oocyte maturation.
View Article and Find Full Text PDFThe receptors for relaxin and insulin-like peptide 3 (INSL3) are now well-characterized as the relaxin family peptide (RXFP) receptors RXFP1 and RXFP2, respectively. They are G-protein-coupled receptors (GPCRs) with closest similarity to the glycoprotein hormone receptors, with both containing large ectodomains with 10 leucine-rich repeats (LRRs). Additionally, RXFP1 and RXFP2 are unique in the LGR family in that they contain a low-density lipoprotein class A (LDL-A) module at their N-terminus.
View Article and Find Full Text PDFThe relaxin peptides are a family of hormones that share a structural fold characterized by two chains, A and B, that are cross-braced by three disulfide bonds. Relaxins signal through two different classes of G-protein-coupled receptors (GPCRs), leucine-rich repeat-containing GPCRs LGR7 and LGR8 together with GPCR135 and GPCR142, now referred to as the relaxin family peptide (RXFP) receptors 1-4, respectively. Although key binding residues have been identified in the B-chain of the relaxin peptides, the role of the A-chain in their activity is currently unknown.
View Article and Find Full Text PDFThe peptide hormone insulin-like peptide 3 (INSL3) is essential for testicular descent and has been implicated in the control of adult fertility in both sexes. The human INSL3 receptor leucine-rich repeat-containing G protein-coupled receptor 8 (LGR8) binds INSL3 and relaxin with high affinity, whereas the relaxin receptor LGR7 only binds relaxin. LGR7 and LGR8 bind their ligands within the 10 leucine-rich repeats (LRRs) that comprise the majority of their ectodomains.
View Article and Find Full Text PDFThe primary stored and circulating form of relaxin in humans, human gene-2 (H2) relaxin, has potent antifibrotic properties with rapidly occurring efficacy. However, when administered to experimental models of fibrosis, H2 relaxin can only be applied over short-term (2-4 week) periods, due to rodents mounting an antibody response to the exogenous human relaxin, resulting in delayed clearance and, hence, increased and variable circulating levels. To overcome this problem, the current study investigated the therapeutic potential of mouse relaxin over long-term exposure in vivo.
View Article and Find Full Text PDFThe receptors for the peptide hormones relaxin and insulin-like peptide 3 (INSL3) are the leucine-rich repeat-containing G-protein-coupled receptors LGR7 and LGR8 recently renamed as the relaxin family peptide (RXFP) receptors, RXFP1 and RXFP2, respectively. These receptors differ from other LGRs by the addition of an N-terminal low density lipoprotein receptor class A (LDLa) module and are the only human G-protein-coupled receptors to contain such a domain. Recently it was shown that the LDLa module of the RXFP1 and RXFP2 receptors is essential for ligand-stimulated cAMP signaling.
View Article and Find Full Text PDFRelaxin-3 is a member of the human relaxin peptide family, the gene for which, RLN3, is predominantly expressed in the brain. Mapping studies in the rodent indicate a highly developed network of RLN3, RLN1, and relaxin receptor-expressing cells in the brain, suggesting that relaxin peptides have important functional roles in the central nervous system. A regioselective disulfide-bond synthesis protocol was developed and used for the chemical synthesis of human (H3) relaxin-3.
View Article and Find Full Text PDFLGR7 and LGR8 are G protein-coupled receptors that belong to the leucine-rich repeat-containing G-protein coupled receptor (LGR) family, including the thyroid-stimulating hormone (TSH), LH and FSH receptors. LGR7 and LGR8 stimulate cAMP production upon binding of the cognate ligands, relaxin and insulin-like peptide 3 (INSL3), respectively. We cloned several novel splice variants of both LGR7 and LGR8 and analysed the function of four variants.
View Article and Find Full Text PDFA novel member of the human relaxin subclass of the insulin superfamily was recently discovered during a genomics database search and named relaxin-3. Like human relaxin-1 and relaxin-2, relaxin-3 is predicted to consist of a two-chain structure and three disulfide bonds in a disposition identical to that of insulin. To undertake detailed biophysical and biological characterization of the peptide, its chemical synthesis was undertaken.
View Article and Find Full Text PDFThe ectodomains of both the relaxin (LGR7) and the INSL3 (LGR8) receptors can be expressed on the cell surface using only a single transmembrane domain. These membrane-anchored proteins retain the ability to bind relaxin and can be cleaved from the cell surface. The subsequent LGR7 protein, 7BP, binds relaxin and can act as a functional relaxin antagonist.
View Article and Find Full Text PDFRelaxin family peptide 1 (RXFP1) receptor (LGR7) and RXFP2 receptor (LGR8) were recently identified as the receptor targets for H2 relaxin and insulin-like peptide 3 (INSL3), respectively. In this study, we define the pharmacology of these two receptors by using a number of receptor chimeras and relaxin family peptides. We have identified two binding sites on these receptors: one primary, high-affinity site within the ectodomain and a secondary, lower affinity site within the transmembrane region.
View Article and Find Full Text PDFLeucine-rich repeat-containing, G protein-coupled receptors (LGRs) represent a unique subgroup of G protein-coupled receptors with a large ectodomain. Recent studies demonstrated that relaxin activates two orphan LGRs, LGR7 and LGR8, whereas INSL3/Leydig insulin-like peptide specifically activates LGR8. Human relaxin 3 (H3 relaxin) was recently discovered as a novel ligand for relaxin receptors.
View Article and Find Full Text PDF