The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes.
View Article and Find Full Text PDFThe best-known function of the essential GPN-loop GTPase Gpn3 is to contribute to RNA polymerase II assembly, a prerequisite for its nuclear targeting. Although this process occurs in the cytoplasm, we have previously shown that Gpn3 enters the cell nucleus before being polyubiquitinated. Here, we show that inhibiting Crm1-mediated nuclear export with leptomycin B, or the proteasome with MG132, caused the nuclear accumulation of recombinant and endogenous Gpn3 in MCF-12A cells.
View Article and Find Full Text PDFThe GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast Saccharomyces cerevisiae. Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene.
View Article and Find Full Text PDF