Membrane proteins are essential components of biological membranes with key roles in cellular processes such as nutrient transport, cell communication, signaling, or energy conversion. Due to their crucial functions, membrane proteins and their complexes are often targets for therapeutic interventions. Expression and purification of membrane proteins are often a bottleneck to yield sufficient material for structural studies and further downstream characterization.
View Article and Find Full Text PDFFree-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution, in a quasi-native environment.
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic has increased the demand for low-cost, portable, and rapid biosensors, driving huge research efforts toward new nanomaterial-based approaches with high sensitivity. Many of them employ antibodies as bioreceptors, which have a costly development process that requires animal facilities. Recently, sybodies emerged as a new alternative class of synthetic binders and receptors with high antigen binding efficiency, improved chemical stability, and lower production costs via animal-free methods.
View Article and Find Full Text PDFMixed lineage leukemia 1 (MLL1) is a histone methyltransferase. Kaposi's sarcoma-associated herpesvirus (KSHV) is a leading cause of malignancy in AIDS. KSHV latently infects tumor cells and its genome is decorated with epigenetic marks.
View Article and Find Full Text PDFThe spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored.
View Article and Find Full Text PDFThe human glucose transporters GLUT1 and GLUT3 have a central role in glucose uptake as canonical members of the Sugar Porter (SP) family. GLUT1 and GLUT3 share a fully conserved substrate-binding site with identical substrate coordination, but differ significantly in transport affinity in line with their physiological function. Here, we present a 2.
View Article and Find Full Text PDFThe coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production.
View Article and Find Full Text PDFPlants are dependent on controlled sugar uptake for correct organ development and sugar storage, and apoplastic sugar depletion is a defense strategy against microbial infections like rust and mildew. Uptake of glucose and other monosaccharides is mediated by Sugar Transport Proteins, proton-coupled symporters from the Monosaccharide Transporter (MST) superfamily. We present the 2.
View Article and Find Full Text PDFLatency-associated nuclear antigen (LANA) is central to episomal tethering, replication and transcriptional regulation of γ2-herpesviruses. LANA binds cooperatively to the terminal repeat (TR) region of the viral episome via adjacent LANA binding sites (LBS), but the molecular mechanism by which LANA assembles on the TR remains elusive. We show that KSHV LANA and MHV-68 LANA proteins bind LBS DNA using strikingly different modes.
View Article and Find Full Text PDF