The imbalance of epigenetic regulatory mechanisms such as DNA methylation, which can promote aberrant gene expression profiles without affecting the DNA sequence, may cause the deregulation of signaling, regulatory, and metabolic processes, contributing to a cancerous phenotype. Since some metabolites are substrates and cofactors of epigenetic regulators, their availability can be affected by characteristic cancer cell metabolic shifts, feeding cancer onset and progression through epigenetic deregulation. Hence, there is a need to study the influence of cancer metabolic reprogramming in DNA methylation to design new effective treatments.
View Article and Find Full Text PDFStem cells encompass a variety of different cell types which converge on the dual capacity to self-renew and differentiate into one or more lineages. These characteristic features are key for the involvement of stem cells in crucial biological processes such as development and ageing. To decipher their underlying genetic substrate, it is important to identify so-called stemness genes that are common to different stem cell types and are consistently identified across different studies.
View Article and Find Full Text PDFEndothelial cell (EC) activity is essential for tissue regeneration in several (patho)physiological contexts. However, our capacity to deliver biomolecules capable of controlling EC fate is relatively limited. Here, we screened a library of microRNA (miR) mimics and identified 25 miRs capable of enhancing the survival of ECs exposed to ischemia-mimicking conditions.
View Article and Find Full Text PDFCancer Stem Cells (CSCs) contribute to cancer aggressiveness, metastasis, chemo/radio-therapy resistance, and tumor recurrence. Recent studies emphasized the importance of metabolic reprogramming of CSCs for the maintenance and progression of the cancer phenotype through both the fulfillment of the energetic requirements and the supply of substrates fundamental for fast-cell growth, as well as through metabolite-induced epigenetic regulation. Therefore, it is of paramount importance to develop therapeutic strategies tailored to target the metabolism of CSCs.
View Article and Find Full Text PDFBirth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions.
View Article and Find Full Text PDFStem cells present unique regenerative abilities, offering great potential for treatment of prevalent pathologies such as diabetes, neurodegenerative and heart diseases. Various research groups dedicated significant effort to identify sets of genes-so-called stemness signatures-considered essential to define stem cells. However, their usage has been hindered by the lack of comprehensive resources and easy-to-use tools.
View Article and Find Full Text PDFHuntington ´s disease (HD) is a progressive, neurodegenerative disease with a fatal outcome. Although the disease-causing gene (huntingtin) has been known for over 20 years, the exact mechanisms leading to neuronal cell death are still controversial. One potential mechanism contributing to the massive loss of neurons observed in the brain of HD patients could be the unfolded protein response (UPR) activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER).
View Article and Find Full Text PDFThe interaction of imidazolium-based ionic liquids with α- and β-cyclodextrins was investigated by electrospray ionization mass spectrometry with variable collision induced dissociation energy and quantum chemical gas-phase calculations. The center-of-mass energy at which 50% of a precursor ion decomposes (Ecm,1/2) was determined for the isolated [cyclodextrin + cation](+) or [cyclodextrin + anion](-) adduct ions of imidazolium-based ionic liquids with different alkyl chain lengths combined with a large set of anions, such as chloride, bromide, bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, methanesulfonate, dicyanamide, and hydrogensulfate. Moreover, both symmetric and asymmetric imidazolium cationic cores were evaluated.
View Article and Find Full Text PDF