Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme in the base excision repair (BER) pathway. APE1 catalyzes incision of the phosphodiester linkage on the 5'-side of apurinic/apyrimidinic (AP) sites during the repair of damaged nucleobases in cellular DNA. Inhibition of this enzyme can potentiate the action of DNA-damaging chemotherapeutic agents.
View Article and Find Full Text PDFEthidium bromide was first described as a DNA intercalator 60 years ago and, over the ensuing years, may be the most widely used fluorescent DNA stain in molecular biology, biochemistry, and histology. Noncovalent DNA binding by ethidium has been well characterized, but to date, there have been no reports of covalent DNA adduct formation by ethidium bromide. This report describes the characterization of covalent adducts generated by the reaction of ethidium with apurinic/apyrimidinic (AP) sites in DNA.
View Article and Find Full Text PDFThe reaction of 1,2-aminothiol groups with aldehyde residues in aqueous solution generates thiazolidine products, and this process has been developed as a catalyst-free click reaction for bioconjugation. The work reported here characterized reactions of the biologically relevant 1,2-aminothiols including cysteamine, cysteine methyl ester, and peptides containing -terminal cysteine residues with the aldehyde residue of apurinic/apyrimidinic (AP) sites in DNA oligomers. These 1,2-aminothiol-containing compounds rapidly generated adducts with AP sites in single-stranded and double-stranded DNA.
View Article and Find Full Text PDFThe experiments described here examined the effects of reaction conditions, various additives, and local sequence on the formation and stability interstrand cross-links (ICLs) derived from the reaction of an apurinic/apyrimidinic (AP) site with the exocyclic amino group of an adenine residue on the opposing strand in duplex DNA. Cross-link formation was observed in a range of different buffers, with faster formation rates observed at pH 5. Inclusion of the base excision repair enzyme alkyladenine DNA glycosylase (hAAG) which binds tightly to AP-containing duplexes decreased, but did not completely prevent, formation of the dA-AP ICL.
View Article and Find Full Text PDFGenome integrity is essential for life and, as a result, DNA repair systems evolved to remove unavoidable DNA lesions from cellular DNA. Many forms of life possess the capacity to remove interstrand DNA cross-links (ICLs) from their genome but the identity of the naturally-occurring, endogenous substrates that drove the evolution and retention of these DNA repair systems across a wide range of life forms remains uncertain. In this review, we describe more than a dozen chemical processes by which endogenous ICLs plausibly can be introduced into cellular DNA.
View Article and Find Full Text PDF