Publications by authors named "Tanguay R"

As a persistent organic contaminant, perfluorooctanesulphonic acid (PFOS) has been widely detected in the environment, wildlife, and humans. The present study revealed that zebrafish embryos exposed to 16 μM PFOS during a sensitive window of 48-96 hour post-fertilization (hpf) disrupted larval morphology at 120 hpf. Malformed zebrafish larvae were characterized by uninflated swim bladder, less developed gut, and curved spine.

View Article and Find Full Text PDF

The composition of the typical commercial diet fed to zebrafish can dramatically vary. By utilizing defined diets we sought to answer two questions: 1) How does the embryonic zebrafish transcriptome change when the parental adults are fed a commercial lab diet compared with a sufficient, defined diet (E+)? 2) Does a vitamin E-deficient parental diet (E-) further change the embryonic transcriptome? We conducted a global gene expression study using embryos from zebrafish fed a commercial (Lab), an E+ or an E- diet. To capture differentially expressed transcripts prior to onset of overt malformations observed in E- embryos at 48h post-fertilization (hpf), embryos were collected from each group at 36hpf.

View Article and Find Full Text PDF

Background: Circulating microRNAs ( miRNAs) are emerging as novel disease biomarkers. We aimed to explore the association between circulating miRNAs and the occurrence of acute myocardial infarction (AMI) in Chinese populations.

Methods And Results: In the discovery stage, the plasma of 20 patients with AMI and 20 controls were pooled respectively and profiled by massively parallel sequencing.

View Article and Find Full Text PDF

Background: Fetal alcohol spectrum disorders (FASD) are a leading cause of neurodevelopmental disability. Nonhuman animal models offer novel insights into its underlying mechanisms. Although the developing zebrafish has great promise for FASD research, a significant challenge to its wider adoption is the paucity of clear, mechanistic parallels between its ethanol (EtOH) responses and those of nonpiscine, established models.

View Article and Find Full Text PDF

The purpose of this study was to determine the system-wide consequences of deficiencies in two essential micronutrients, vitamins E and C, on the proteome using zebrafish (Danio rerio) as one of the few vertebrate models that similar to humans cannot synthesize vitamin C. We describe a label-free proteomics workflow to detect changes in protein abundance estimates dependent on vitamin regimes. We used ion-mobility-enhanced data-independent tandem mass spectrometry to determine differential regulation of proteins in response to low dietary levels of vitamin C with or without vitamin E.

View Article and Find Full Text PDF

Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish Danio rerio research laboratories. Most laboratories use approximately 25 to 50 ppm unbuffered chlorine solution for 5 to 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, but is less effective against cyst or spore stages of protozoa and certain Mycobacterium spp.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of α-tocopherol (Vitamin E) in protecting embryo polyunsaturated fatty acids (PUFAs) from lipid peroxidation during zebrafish embryogenesis.
  • New methods were developed to measure levels of α-tocopherol, cholesterol, and various fatty acids in zebrafish embryos, with particular emphasis on how vitamin E status impacts lipid peroxidation products.
  • Results show that embryos deficient in α-tocopherol experienced faster depletion of important fatty acids, increased oxidized products, and suggest that α-tocopherol is essential for maintaining the integrity of these fatty acids during early development.
View Article and Find Full Text PDF

Small heat shock proteins (sHSPs) are oligomeric stress proteins characterized by an α-crystallin domain (ACD) surrounded by a N-terminal arm and C-terminal extension. Publications on sHSPs have reported that they exist in prokaryotes and eukaryotes but, to our knowledge, not in viruses. Here we show that sHSPs are present in some cyanophages that infect the marine unicellular cyanobacteria, Synechococcus and Prochlorococcus.

View Article and Find Full Text PDF

Nanomaterials are highly dynamic in biological and environmental media. A critical need for advancing environmental health and safety research for nanomaterials is to identify physical and chemical transformations that affect the nanomaterial properties and their toxicity. Silver nanoparticles, one of the most toxic and well-studied nanomaterials, readily react with sulfide to form Ag(0)/Ag2S core-shell particles.

View Article and Find Full Text PDF

There are tens of thousands of man-made chemicals in the environment; the inherent safety of most of these chemicals is not known. Relevant biological platforms and new computational tools are needed to prioritize testing of chemicals with limited human health hazard information. We describe an experimental design for high-throughput characterization of multidimensional in vivo effects with the power to evaluate trends relating to commonly cited chemical predictors.

View Article and Find Full Text PDF

The fish early-life stage (FELS) test (Organisation for Economic Co-operation and Development [OECD] test guideline 210) is the primary test used internationally to estimate chronic fish toxicity in support of ecological risk assessments and chemical management programs. As part of an ongoing effort to develop efficient and cost-effective alternatives to the FELS test, there is a need to identify and describe potential adverse outcome pathways (AOPs) relevant to FELS toxicity. To support this endeavor, the authors outline and illustrate an overall strategy for the discovery and annotation of FELS AOPs.

View Article and Find Full Text PDF
Article Synopsis
  • Retinoic acid (RA) is crucial for the proper development of vertebrates, but its improper regulation can lead to developmental defects.
  • MicroRNAs (miRNAs), particularly the miR-19 family, play an important role in regulating metabolic enzymes like CYP26A1 that control RA levels during development.
  • Research showed that RA exposure reduces miR-19 levels, which in turn misregulates CYP26A1, leading to axis defects; restoring miR-19 levels can counteract these effects.
View Article and Find Full Text PDF

The design, manufacture and application of safer products and manufacturing processes have been important goals over the last decade and will advance in the future under the umbrella of "Green Chemistry". In this review, we focus on the burgeoning diversity of new engineered nanomaterials (ENMs) and the prescient need for a nanotoxicology paradigm that quickly identifies potentially hazardous nanochemistries. Advances in predictive toxicological modeling in the developing zebrafish offer the most immediate translation to human hazard that is practically achievable with high throughput approaches.

View Article and Find Full Text PDF

Mouse prostate membrane-associated proteins of the annexin family showed changes in SUMOylation during androgen treatment. Among these the calcium-binding annexin A1 protein (ANXA1) was chosen for further characterization given its role in protein secretion and cancer. SUMOylation of ANXA1 was confirmed by overexpressing SUMO-1 in LNCaP cells.

View Article and Find Full Text PDF

Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are byproducts of combustion and photo-oxidation of parent PAHs. OPAHs are widely present in the environment and pose an unknown hazard to human health. The developing zebrafish was used to evaluate a structurally diverse set of 38 OPAHs for malformation induction, gene expression changes and mitochondrial function.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity.

View Article and Find Full Text PDF

We hypothesized that zebrafish (Danio rerio) undergoing long-term vitamin E deficiency with marginal vitamin C status would develop myopathy resulting in impaired swimming. Zebrafish were fed for 1 y a defined diet without (E-) and with (E+) vitamin E (500 mg α-tocopherol/kg diet). For the last 150 days, dietary ascorbic acid concentrations were decreased from 3500 to 50 mg/kg diet and the fish sampled periodically to assess ascorbic acid concentrations.

View Article and Find Full Text PDF

Transient developmental exposure to 0.1μM bisphenol A (BPA) results in larval zebrafish hyperactivity and learning impairments in the adult, while exposure to 80μM BPA results in teratogenic responses, including craniofacial abnormalities and edema. The mode of action underlying these effects is unclear.

View Article and Find Full Text PDF

Systematic toxicological study is still required to fully understand the hazard potentials of gold nanoparticles (AuNPs). Because their biomedical applications are rapidly evolving, we investigated developmental toxicity of AuNPs in an in vivo embryonic zebrafish model at exposure concentration ranges from 0.08 to 50mg/l.

View Article and Find Full Text PDF

For over a decade, spontaneous intestinal neoplasia has been observed in zebrafish (Danio rerio) submitted to the ZIRC (Zebrafish International Resource Center) diagnostic service. In addition, zebrafish displayed preneoplastic intestinal changes including hyperplasia, dysplasia, and enteritis. A total of 195 zebrafish, representing 2% of the total fish submitted to the service, were diagnosed with these lesions.

View Article and Find Full Text PDF

The mechanism of action of silver nanoparticles (AgNPs) is unclear due to the particles' strong tendency to agglomerate. Preventing agglomeration could offer precise control of the physicochemical properties that drive biological response to AgNPs. In an attempt to control agglomeration, we exposed zebrafish embryos to AgNPs of 20 or 110 nm core size, and polypyrrolidone (PVP) or citrate surface coatings in media of varying ionic strength.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are currently one of the most important classes of nanomaterials with unique properties sparking off numerous applications in many fields, including electronics, material science and medicine. However, applications of CNTs in medicine and other biological fields are hampered by their insolubility in aqueous media and concerns regarding toxicity. In this study, seven types of CNTs, including two single-walled, one double-walled, and four multi-walled, were evaluated for possible toxicological effects.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP) miRNA data in an increasing number of model species.

View Article and Find Full Text PDF

The hepatic α-tocopherol transfer protein (TTP) is required for optimal α-tocopherol bioavailability in humans; mutations in the human TTPA gene result in the heritable disorder ataxia with vitamin E deficiency (AVED, OMIM #277460). TTP is also expressed in mammalian uterine and placental cells and in the human embryonic yolk-sac, underscoring TTP's significance during fetal development. TTP and vitamin E are essential for productive pregnancy in rodents, but their precise physiological role in embryogenesis is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • PFOS is an environmental contaminant that negatively impacts zebrafish behavior when they are exposed to it chronically during different life stages.
  • The study found that adult zebrafish exposed to PFOS exhibited increased swim speed under stress, but exhibited impaired responses compared to controls.
  • F1 offspring from parents exposed to PFOS showed higher rates of malformation and mortality, along with altered swimming behaviors, indicating long-term effects on neurobehavioral development.
View Article and Find Full Text PDF