Publications by authors named "Tangsong Zhu"

Patients with open abdominal (OA) wounds have a mortality risk of up to 30%, and the resulting disabilities would have profound effects on patients. Here, we present a novel double-sided adhesive tape developed for the management of OA wounds. The tape features an asymmetrical structure and employs an acellular dermal matrix (ADM) with asymmetric wettability as a scaffold.

View Article and Find Full Text PDF

Aqueous rechargeable magnesium batteries hold immense potential for intrinsically safe, cost-effective, and sustainable energy storage. However, their viability is constrained by a narrow voltage range and suboptimal compatibility between the electrolyte and electrodes. Herein, we introduce an innovative ternary deep eutectic Mg-ion electrolyte composed of MgCl·6HO, acetamide, and urea in a precisely balanced 1:1:7 molar ratio.

View Article and Find Full Text PDF

Tough and self-healable substrates can enable stretchable electronics long service life. However, for substrates, it still remains a challenge to achieve both high toughness and autonomous self-healing ability at room temperature. Herein, a strategy by using the combined effects between quadruple H-bonding and slidable cross-links is proposed to solve the above issues in the elastomer.

View Article and Find Full Text PDF

On-skin devices that show both high performance and imperceptibility are desired for physiological information detection, individual protection, and bioenergy conversion with minimal sensory interference. Herein, versatile electrospun micropyramid arrays (EMPAs) combined with ultrathin, ultralight, gas-permeable structures are developed through a self-assembly technology based on wet heterostructured electrified jets to endow various on-skin devices with both superior performance and imperceptibility. The designable self-assembly allows structural and material optimization of EMPAs for on-skin devices applied in daytime radiative cooling, pressure sensing, and bioenergy harvesting.

View Article and Find Full Text PDF

As a biodegradable elastomer, poly(1,8-octanediol--citrate) (POC) has been widely applied in tissue engineering and implantable electronics. However, the unclear degradation mechanism has posed a great challenge for the better application and development of POC. To reveal the degradation mechanism, here, we present a systematic investigation into in vivo and in vitro degradation behaviors of POC.

View Article and Find Full Text PDF

The demand for stretchable electronics with a broader working range is increasing for wide application in wearable sensors and e-skin. However, stretchable conductors based on soft elastomers always exhibit low working range due to the inhomogeneous breakage of the conductive network when stretched. Here, a highly stretchable and self-healable conductor is reported by adopting polyrotaxane and disulfide bonds into the binding layer.

View Article and Find Full Text PDF

This paper presents an efficient pathway to achieve the dielectric constant as low as 2.48 @ 25 °C, 1 MHz for nonporous poly(imide siloxane) films with mechanical and thermal robustness. A symmetric disiloxane-linked alkyl diamine, bis(aminopropyl)tetramethyldisiloxane (BATMS) with a well-defined molecular formula NHCHCHCHSi(CH)OSi(CH)CHCHCHNH, has been used to controllably reduce the dielectric constant of the polymer films by adjusting the loading of BATMS.

View Article and Find Full Text PDF