Publications by authors named "Tangbin Liao"

MiRNA-21 is recognized as an important biological marker for the diagnosis, treatment, and prognosis of breast cancer. Here, we have created a nanochannel biosensor utilizing the duplex-specific nuclease (DSN) signal amplification strategy to achieve the detection of miRNAs. In this system, DNA as the capture probe was covalently immobilized on the surface of nanochannels, which hybridized with the target miRNA and forms RNA/DNA duplexes.

View Article and Find Full Text PDF

The rapid extraction of high-purity nucleic acids from complex biological samples using conventional methods is complicated. Therefore, in this study, glycine-pillar[6]arene (Gly-P6)-functionalized tapered nanochannels were constructed using 32-mer single-stranded . DNA (ssDNA) as a model sequence, which can selectively transport ssDNA by multiple noncovalent forces (transport flux of 2.

View Article and Find Full Text PDF

Compared with free miRNAs in blood, miRNAs in exosomes have higher abundance and stability. Therefore, miRNAs in exosomes can be regarded as an ideal tumor marker for early cancer diagnosis. Here, a peptide nucleic acid (PNA)-functionalized nanochannel biosensor for the ultrasensitive and specific detection of tumor exosomal miRNAs is proposed.

View Article and Find Full Text PDF

Here, we demonstrate a phosphorodiamidate morpholino oligos (PMO)-functionalized nanochannel biosensor for label-free detection of microRNAs (miRNAs) with ultrasensitivity and high sequence specificity. PMO, as a capture probe, was covalently anchored on the nanochannel surface. Because of the neutral character and high sequence-specific affinity of PMO, hybridization efficiency between PMO and miRNAs was enhanced, thus largely decreasing background signals and highly improving the detection specificity and sensitivity.

View Article and Find Full Text PDF

A very simple sensing device based on biomimetic nanochannels has been developed for label-free, ultrasensitive and highly sequence-specific detection of DNA. Probe DNA was modified on the inner wall of the nanochannel surface by layer-by-layer (LBL) assembly. After probe DNA immobilization, DNA detection was realized by monitoring the rectified ion current when hybridization occurred.

View Article and Find Full Text PDF