Study Question: Is the protein l-arginine methyltransferase 3 (PRMT3)/asymmetrical dimethylarginine (ADMA)/nitric oxide (NO) pathway involved in the development of recurrent miscarriage (RM), and what is the potential mechanism?
Summary Answer: Elevated levels of PRMT3 and ADMA inhibit NO formation in the decidua, thereby impairing the functions of trophoblast cells at the maternal-foetal interface.
What Is Known Already: Decreased NO bioavailability is associated with RM. ADMA, an endogenous inhibitor of nitric oxide synthase (NOS), is derived from the methylation of protein arginine residues by PRMTs and serves as a predictor of mortality in critical illness.
Objective: Preeclampsia is a pregnancy-specific disorder that is a major cause of maternal and foetal morbidity and mortality, with a prevalence of 6-8% of pregnancies. Although the downregulation of lysyl oxidase (LOX) and LOX-like protein 2 (LOXL2), which leads to reduced trophoblast cell migration and invasion through activation of the TGF-β1/Smad3/collagen pathway, is relevant to preeclampsia, the mechanisms regulating differences in the gene expression of LOX and LOXL2 in placentas are not yet understood. This study aimed to investigate the mechanisms regulating differences in the gene expression of LOX and LOXL2 in placentas.
View Article and Find Full Text PDFRecurrent spontaneous miscarriage (RSM) is a systemic disorder that has been defined as two or more pregnancies lost before the 20th week of gestation. Although the impaired function of macrophages at the maternal-fetal interface has been reported to be associated with RSM, the underlying mechanisms have not been fully elucidated. Here, we revealed that HDAC8 plays a critical role in RSM.
View Article and Find Full Text PDFCytokine Growth Factor Rev
April 2020
With the discovery of innate lymphoid cells (ILCs), which are especially enriched in barrier surfaces, the family of innate lymphocytes has grown. A unique characterization of these cells can provide a phenotypical definition of ILCs and their specific functions in different tissue environments. Although ILCs are part of the innate immune system, they are derived from lymphoid lineages lacking rearranged antigen-specific and pattern-recognition receptors.
View Article and Find Full Text PDF