Publications by authors named "Tang Gao"

This study established a method for determining trace anions in G2-grade phosphoric acid under ultra-clean conditions that used two-dimensional ion-exclusion-ion-exchange chromatography coupled with valve-switching technology. The optimal flow rate of ultrapure water through the ion-exclusion column in the first dimension was determined to be 0.5 mL/min through comparative experiments.

View Article and Find Full Text PDF

Transplant rejection remains a significant barrier to the long-term success of organ transplantation. Biopsy, although considered the gold standard, is invasive, costly, and unsuitable for routine monitoring. Traditional biomarkers, such as creatinine and troponin, offer limited predictive value owing to their low specificity, and conventional imaging techniques often fail to detect early organ damage, increasing the risk of undiagnosed rejection episodes.

View Article and Find Full Text PDF

Significant efforts have been made to deliver immunosuppressants-loaded nanoparticles (NPs) to lymph nodes (LNs) to mitigate transplant rejection. However, conventional administration techniques encounter challenges in enhancing the retention of NPs in the LNs. Attributing the strong affinity of tannic acid (TA) molecules to the elastin of LN conduits, we developed a novel formulation of NPs encapsulating Tacrolimus (FK506), and subsequently modified with TA to produce TA-FNP with a final diameter of approximately 86.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) shows promise in treating myocardial ischemia-reperfusion injury (MIRI), but the challenge of controlled and sustained release hinders its clinical utility. In this study, we developed a platelet membrane-encapsulated mesoporous silica nanoparticle loaded with the HS donor diallyl trisulfide (PM-MSN-DATS). PM-MSN-DATS demonstrated optimal encapsulation efficiency and drug-loading content.

View Article and Find Full Text PDF

Cancer continues to pose a significant threat to global health, with its high mortality rates largely attributable to delayed diagnosis and non-specific treatments. Early and accurate diagnosis is crucial, yet it remains challenging due to the subtle and often undetectable early molecular changes. Traditional single-target fluorescent probes often fail to accurately identify cancer cells, relying solely on single biomarkers and consequently leading to high rates of false positives and inadequate specificity.

View Article and Find Full Text PDF

Purpose: There is currently limited information on the utility of transthoracic echocardiography (TTE)-derived Doppler parameters for assessing bioprosthetic tricuspid valve (BTV) dysfunction. Our study aimed to establish the precision and appropriate reference ranges for routinely collected transthoracic Doppler parameters in the assessment of BTV dysfunction.

Methods: We retrospectively evaluated 100 BTV patients who underwent TTE.

View Article and Find Full Text PDF

Myocardial ischemia/reperfusion injury (MIRI) is the leading cause of irreversible myocardial damage. A pivotal pathogenic factor is ischemia/reperfusion (I/R)-induced cardiomyocyte ferroptosis, marked by iron overload and lipid peroxidation. However, the impact of lipid droplet (LD) changes on I/R-induced cardiomyocyte ferroptosis is unclear.

View Article and Find Full Text PDF

Tacrolimus (FK506) is an effective therapeutic for transplant rejection in clinical practice, primarily inhibiting rejection by suppressing the activation and proliferation of allogeneic T cells in the lymph nodes (LNs). However, conventional administration methods face challenges in directly delivering free FK506 to the LNs. In this study, we introduce a novel LN-targeted delivery system based on mesoporous silica nanoparticles (MSNs-FK506-MECA79).

View Article and Find Full Text PDF

T cells serve a pivotal role in the rejection of transplants, both by directly attacking the graft and by recruiting other immune cells, which intensifies the rejection process. Therefore, monitoring T cells becomes crucial for early detection of transplant rejection, while targeted drug delivery specifically to T cells can significantly enhance the effectiveness of rejection therapy. However, regulating the activity of T cells within transplanted organs is challenging, and the prolonged use of immunosuppressive drugs is associated with notable side effects and complications.

View Article and Find Full Text PDF

Myocardial ischemia-reperfusion injury (MIRI) is a widely recognized cardiovascular disease that significantly impacts the prognosis of patients undergoing myocardial infarction recanalization. This condition can be fatal and involves complex pathophysiological mechanisms. Early diagnosis of MIRI is crucial to minimize myocardial damage and reducing mortality.

View Article and Find Full Text PDF

Much can be learned from the research and development of scintillator crystals for improving the scintillation performance of glasses. Relying on the concept of "embedding crystalline order in glass", we have demonstrated that the scintillation properties of Ce-doped nanoglass composites (nano-GCs) can be optimized via the synergistic effects of Gd-sublattice sensitization and band-gap engineering. The nano-GCs host a large volume fraction of KYGdF mixed-type fluoride nanocrystals (NCs) and still retain reasonably good transparency at Ce-emitting wavelengths.

View Article and Find Full Text PDF

FK506, a first-line immunosuppressant, is routinely administered orally and intravenously following heart transplantation. However, frequent administration can result in a substantial psychological burden to patients, resulting in non-adherence to medication. The purpose of our study is to overcome the disadvantages of systemic drug administration by developing a polymer-based delivery system that is tunable and biodegradable and that can release highly hydrophobic FK506 over extended periods to treat or prevent acute cardiac allograft rejection.

View Article and Find Full Text PDF

Objective: Acute rejection (AR) screening has always been the focus of patient management in the first several years after heart transplantation (HT). As potential biomarkers for the non-invasive diagnosis of AR, microRNAs (miRNAs) are limited by their low abundance and complex origin. Ultrasound-targeted microbubble destruction (UTMD) technique could temporarily alter vascular permeability through cavitation.

View Article and Find Full Text PDF

Deep anterior lamellar keratoplasty (DALK) is a technique for cornea transplantation which is associated with reduced patient morbidity. DALK has been explored as a potential application of robot microsurgery because the small scales, fine control requirements, and difficulty of visualization make it very challenging for human surgeons to perform. We address the problem of modelling the small scale interactions between the surgical tool and the cornea tissue to improve the accuracy of needle insertion, since accurate placement within 5% of target depth has been associated with more reliable clinical outcomes.

View Article and Find Full Text PDF

Allograft rejection has always been a major obstacle in organ transplantation. The current clinical diagnostic gold standard for allograft rejection is an invasive biopsy. However, biopsy has some limitations, such as sampling errors, risk of serious complications, and high cost.

View Article and Find Full Text PDF

With the improvement of the conversion efficiency of LED chip and fluorescent material and the increasing demand for high-brightness light sources, LED technology has begun to move toward the direction of high-power. However, there is a huge problem that high-power LED must face with a large amount of heat generated by high power causing a high temperature thermal decay or even thermal quenching of the fluorescent material in the device, resulting in a reduction of the luminous efficiency, color coordinates, color rendering index, light uniformity, and service life of LED. In order to solve this problem, fluorescent materials with high thermal stability and better heat dissipation were prepared to enhance their performance in high-power LED environments.

View Article and Find Full Text PDF

Despite exquisite immune response modulation, the extensive application of microRNA therapy in treating heart transplant rejection is still impeded by poor stability and low target efficiency. Here we have developed a low-intensity pulsed ultrasound (LIPUS) cavitation-assisted genetic therapy after executing the heart transplantation (LIGHT) strategy, facilitating microRNA delivery to target tissues through the LIPUS cavitation of gas vesicles (GVs), a class of air-filled protein nanostructures. We prepared antagomir-155 encapsulated liposome nanoparticles to enhance the stability.

View Article and Find Full Text PDF

Background: Cancer stem cells (CSCs) are crucial for the growth, metastasis, drug resistance, recurrence, and spread of tumors. Napabucasin (NAP) could effectively inhibit CSC, but its mechanism has not been fully explained. Additionally, NAP also has the drawbacks of poor water solubility and low utilization.

View Article and Find Full Text PDF

Background: Bone marrow-derived mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs) have shown potent anti-inflammatory function in various pathological conditions, such as osteoarthritis and neurodegenerative diseases. Since the number of EVs naturally secreted by cells is finite and they usually bear specific repertoires of bioactive molecules to perform manifold cell-cell communication, but not one particular therapeutic function as expected, their practical application is still limited. Strategies are needed to increase the production of EVs and enhance their therapeutic function.

View Article and Find Full Text PDF

As macrophage infiltration is significantly related to the progression of inflammatory bowel disease (IBD), monitoring the macrophages is a valuable strategy for IBD diagnosis. However, owing to the harsh physiological environment of the gastrointestinal tract and enzymatic degradation, the development of orally administrable imaging probes for tracking macrophages remains a considerable challenge. Accordingly, herein, an orally administrable aggregation-induced emission biomimetic probe (HBTTPIP/β-glucan particles [GPs]) is developed for tracing macrophages; HBTTPIP/GPs can diagnose and alleviate dextran sulfate sodium (DSS)-induced colonic inflammation and self-report the treatment efficiency.

View Article and Find Full Text PDF

Sensitive detection of β-galactosidase (β-gal) is of great significance for early diagnosis of ovarian cancer. Fluorescent probes for detecting β-gal have received great interest due to the non-invasiveness, excellent sensitivity, high temporal, and superior spatial resolution. However, most reported fluorescent sensors for β-gal suffer from aggregation caused quenching effect when accumulated, and cannot discriminate β-gal from other species, especially, Escherichia coliβ-gal.

View Article and Find Full Text PDF

FK506, a first-line immunosuppressant, is routinely administered orally and intravenously to inhibit activation and proliferation of T cells after heart transplantation (HT). Current administration route is not conducive enough to exert its efficacy in lymphatic system. Herein, we proposed that subcutaneous (SC) administration of FK506-loaded nanoparticles (PLGA-FK506-NPs) would be valuable for treating acute rejection after HT.

View Article and Find Full Text PDF

Real-time monitoring of post-transplant immune response is critical to prolong the survival of grafts. The current gold standard for assessing the immune response to graft is biopsy. However, such a method is invasive and prone to false negative results due to limited tissue size available and the heterogeneity of the rejection site.

View Article and Find Full Text PDF

We report the first ESIPT-based probe ABTB, for the highly sensitive and selective imaging of formaldehyde (FA). The various theoretical calculations have been systematically performed, and clearly unravel the lighting mechanism of the fluorescent probe for FA. Additionally, the probe was successfully applied in monitoring endogenous FA in the brain of AD mice.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionb9mdj617u64gnjh8eeo5d8f2k0epl319): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once