Two means to achieve high yield of individually addressable single-walled carbon nanotubes (CNTs) are developed and examined. The first approach matches the effective channel width and the density of horizontally aligned CNTs. This method can provide single CNT devices and also allows control over the average number of CNTs per channel.
View Article and Find Full Text PDFInteractions with the substrate that allow near perfect horizontal alignment in combination with large difference in the coefficient of thermal expansion are shown to lead to uniaxial compressive strain in as-grown single-walled carbon nanotubes on single crystal quartz. Temperature dependence of Raman G-band spectra along the length of individual nanotubes reveals that the compressive strain is nonuniform and can be larger than 1% locally at room temperature. A response of 27 cm(-1) upshift per % compressive strain is estimated for the G-band longitudinal optical phonon mode of semiconducting nanotubes.
View Article and Find Full Text PDFThe lifetimes of optical phonons (OPs) in single-walled carbon nanotubes are determined by time-resolved incoherent anti-Stokes Raman scattering using a subpicosecond pump-probe method. Lifetimes in semiconducting and metallic nanotubes at room temperature are similar, 1.2 and 0.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWNTs) have many exceptional electronic properties. Realizing the full potential of SWNTs in realistic electronic systems requires a scalable approach to device and circuit integration. We report the use of dense, perfectly aligned arrays of long, perfectly linear SWNTs as an effective thin-film semiconductor suitable for integration into transistors and other classes of electronic devices.
View Article and Find Full Text PDFDoping of individual single-walled carbon nanotubes via noncovalent adsorption of polyethylenimine which converts p-type semiconducting nanotubes into n-type is examined by micro-Raman studies. Distinctively different responses are observed in metallic and in semiconducting nanotubes. Very little or no changes in the radial breathing and the disorder modes are observed upon polymer adsorption on semiconducting carbon nanotubes indicating noncovalent nature of this process.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWNTs) demonstrate remarkable electronic and mechanical properties useful in developing areas such as nanoelectromechanical systems and flexible electronics. However, the highly inhomogeneous electronic distribution arising from different diameters and chirality in any given as-synthesized SWNT samples imposes severe limitations. Recently demonstrated selective chemical functionalization methods may provide a simple scalable means of eliminating metallic tubes from SWNT transistors and electronic devices.
View Article and Find Full Text PDFNetwork behavior in single-walled carbon nanotubes (SWNTs) is examined by polymer electrolyte gating. High gate efficiencies, low voltage operation, and the absence of hysteresis in polymer electrolyte gating lead to a convenient and effective method of analyzing transport in SWNT networks. Furthermore, the ability to control carrier type with chemical groups of the host polymer allows us to examine both electron and hole conduction.
View Article and Find Full Text PDF