Herein, enhancements in thermoelectric (TE) performance, both the power factor (PF) and thermal stability, are exhibited by sandwiching HfO and TiO layers onto atomic layer deposited-ZnO thin films. High-temperature TE measurements from 300 to 450 K revealed an almost two-fold improvement in electrical conductivity for TiO/ZnO (TZO) samples, primarily owing to an increase in carrier concentration by Ti doping. On the other hand, HfO/ZnO (HZO) achieved the highest PF values owing to maintaining Seebeck coefficients comparable to pure ZnO.
View Article and Find Full Text PDFSensors (Basel)
September 2020
Emergent applications in wearable electronics require inexpensive sensors suited to scalable manufacturing. This work demonstrates a large-area thermal sensor based on distributed thermocouple architecture and ink-based multilayer graphene film. The proposed device combines the exceptional mechanical properties of multilayer graphene nanocomposite with the reliability and passive sensing performance enabled by thermoelectrics.
View Article and Find Full Text PDFSemiconductor nanowire heterostructures have been shown to provide appealing properties for optoelectronics and solid-state energy harvesting by thermoelectrics. Among these nanoarchitectures, coaxial core-shell nanowires have been of primary interest due to their electrical functionality, as well as intriguing phonon localization effects in the surface-dominated regime predicted via atomic simulations. However, experimental studies on the thermophysical properties of III-V semiconductor core-shell nanowires remain scarce regardless of the ubiquitous nature of these compounds in solid-state applications.
View Article and Find Full Text PDFWe show that aperiodic superlattices exhibit intriguing interplay between phononic coherent wave interference effects and incoherent transport. In particular, broadband Anderson localization results in a drastic thermal conductivity reduction of 98% at room temperature, providing an ultralow value of 1.3 W m^{-1} K^{-1}, and further yields an anomalously large thermal anisotropy ratio of ∼10^{2} in aperiodic Si/Ge superlattices.
View Article and Find Full Text PDFDevelopments in thermoelectric (TE) transparent p-type materials are scarce and do not follow the trend of the corresponding n-type materials - a limitation of the current transparent thermoelectric devices. P-type thermoelectric thin films of CuI have been developed by three different methods in order to maximise optical transparency (>70% in the visible range), electrical (σ = 1.1 × 10 Sm) and thermoelectric properties (ZT = 0.
View Article and Find Full Text PDFThe thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates.
View Article and Find Full Text PDFNanotechnology
September 2016
We report on the thermoelectric properties of large-area high-aspect-ratio nanostructures. We fabricate the structures by atomic layer deposition of conformal ZnO thin films on track-etched polycarbonate substrate. The resulting structure consists of ZnO tubules which continue through the full thickness of the substrate.
View Article and Find Full Text PDF