Chronic wounds present significant clinical challenges due to the high risk of infections and persistent inflammation. While personalized treatments in point-of-care settings are crucial, they are limited by the complex fabrication techniques of the existing products. The calcium sulfate hemihydrate (CSH)-based drug delivery platform enables rapid fabrication but lacks antioxidant and antibacterial properties, essential to promote healing.
View Article and Find Full Text PDFFor most individuals, wound healing is a highly organized, straightforward process, wherein the body transitions through different phases in a timely manner. However, there are instances where external intervention becomes necessary to support and facilitate different phases of the body's innate healing mechanism. Furthermore, in developing countries, the cost of the intervention significantly impacts access to treatment options as affordability becomes a determining factor.
View Article and Find Full Text PDFFluorescent probes are an indispensable tool in the realm of bioimaging technologies, providing valuable insights into the assessment of biomaterial integrity and structural properties. However, incorporating fluorophores into scaffolds made from melt electrowriting (MEW) poses a challenge due to the sustained, elevated temperatures that this processing technique requires. In this context, [n]cycloparaphenylenes ([n]CPPs) serve as excellent fluorophores for MEW processing with the additional benefit of customizable emissions profiles with the same excitation wavelength.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2023
Craniofacial development is a complex and tightly regulated process and disruptions can lead to structural birth defects, the most common being nonsyndromic cleft lip and palate (NSCLP). Previously, we identified as a candidate regulator of NSCLP through family-based association studies, yet its specific contributions to oral and palatal formation are poorly understood. This study investigated the role of during zebrafish craniofacial development through genetic disruption and knockdown approaches.
View Article and Find Full Text PDFLight-matter interaction in certain aliovalently doped metal oxide nanocrystals (NCs) results in the generation of localized surface plasmon resonance (LSPR) in the near- to mid-infrared, allowing for their implementation in various technologies, including photovoltaics, sensing, and electrochromics. These materials could also facilitate coupling between plasmonic and semiconducting properties, making them highly interesting for electronic and quantum information technologies. In the absence of dopants, free charge carriers can arise from native defects such as oxygen vacancies.
View Article and Find Full Text PDFThe future of burn wound treatment lies in developing bioactive dressings for faster and more effective healing and regeneration. Silk fibroin (SF) hydrogels have proven regenerative abilities and are being explored as a burn wound dressing. However, unfavorable gelation conditions limit the processability and clinical application.
View Article and Find Full Text PDFElectron transfer to and from metal oxide nanocrystals (NCs) modulates their infrared localized surface plasmon resonance (LSPR), revealing fundamental aspects of their photophysics and enabling dynamic optical applications. We synthesized and chemically reduced dopant-segregated Sn-doped InO NCs, investigating the influence of radial dopant segregation on LSPR modulation and near-field enhancement (NFE). We found that core-doped NCs show large LSPR shifts and NFE change during chemical titration, enabling broadband modulation in LSPR energy of over 1000 cm and of peak extinction over 300%.
View Article and Find Full Text PDFChitosan foams are among the approved hemostats for pre-hospital hemorrhagic control but suffer from drawbacks related to mucoadhesiveness and rebleeding. Herein, we have developed a designer bilayered hemostatic foam consisting of a bioactive layer composed of silica particles (≈300 nm) and silk fibroin to serve as the tissue interfacing component on a chitosan foam. The foam composition was optimized based on the in vitro clotting behavior and cytocompatibility of individual components.
View Article and Find Full Text PDFAmong the various electrohydrodynamic (EHD) processing techniques, electrowriting (EW) produces the most complex 3D structures. Aqueous solution EW similarly retains the potential for additive manufacturing well-resolved 3D structures, while providing new opportunities for processing biologically derived polymers and eschewing organic solvents. However, research on aqueous-based EHD processing is still limited.
View Article and Find Full Text PDFActive modulation of the plasmonic response is at the forefront of today's research in nano-optics. For a fast and reversible modulation, external magnetic fields are among the most promising approaches. However, fundamental limitations of metals hamper the applicability of magnetoplasmonics in real-life active devices.
View Article and Find Full Text PDFNon-syndromic cleft lip with or without cleft palate (NSCL/P) is a common, severe craniofacial malformation that imposes significant medical, psychosocial and financial burdens. NSCL/P is a multifactorial disorder with genetic and environmental factors playing etiologic roles. Currently, only 25% of the genetic variation underlying NSCL/P has been identified by linkage, candidate gene and genome-wide association studies.
View Article and Find Full Text PDFJ Med Imaging Radiat Oncol
October 2021
Introduction: Transjugular intrahepatic portosystemic shunt (TIPSS) is an effective modality in reducing portal pressure, and its current main indications are for the management of recurrent ascites and variceal bleeding. The demand and indications for TIPSS are growing. However, it is a complicated and technically demanding procedure with poorer outcomes associated with low volume centres.
View Article and Find Full Text PDFWhen aliovalent dopants are sufficiently segregated to the core or near the surface of semiconductor nanocrystals, charge carriers donated by the dopants are also segregated to the core or near the surface, respectively. In Sn-doped indium oxide nanocrystals, we find that this contrast in free charge carrier concentration creates a core and shell with differing dielectric properties and results in two distinctly observable plasmonic extinction peaks. The trends in this dual-mode optical response with shell growth differ from core/shell nanoparticles composed of traditional plasmonic metals such as Au and Ag.
View Article and Find Full Text PDFPoly(vinylidene fluoride) has attracted interest from the biomaterials community owing to its stimuli responsive piezoelectric property and promising results for application in the field of tissue engineering. Here, solution blow spinning and electrospinning were employed to fabricate PVDF fibres and the variation in resultant fibre properties assessed. The proportion of piezoelectric β-phase in the solution blow spun fibres was higher than electrospun fibres.
View Article and Find Full Text PDFDegenerately doped semiconductor nanocrystals (NCs) exhibit strong light-matter interactions due to localized surface plasmon resonance (LSPR) in the near- to mid-infrared region. Besides being readily tuned through dopant concentration introduced during synthesis, this LSPR can also be dynamically modulated by applying an external electrochemical potential. This characteristic makes these materials candidates for electrochromic window applications.
View Article and Find Full Text PDFHypercholesterolemia, the driving force of atherosclerosis, accelerates the expansion and mobilization of hematopoietic stem and progenitor cells (HSPCs). The molecular determinants connecting hypercholesterolemia with hematopoiesis are unclear. Here, we report that a somite-derived prohematopoietic cue, AIBP, orchestrates HSPC emergence from the hemogenic endothelium, a type of specialized endothelium manifesting hematopoietic potential.
View Article and Find Full Text PDFTaurine or 2-aminoethanesulfonic has many fundamental biological roles such as conjugation of bile acids, antioxidation, osmoregulation, membrane stabilization, and modulation of calcium signaling. It is essential for cardiovascular function and development and function of the skeletal muscle, the retina, and the central nervous system. Functions of taurine include osmoregulation; membrane stabilization; modulation of calcium levels; and antioxidation, antiapoptotic, anti-inflammatory, and antilipid activities.
View Article and Find Full Text PDFUnlabelled: The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices.
View Article and Find Full Text PDFElectrical stimulation for delivery of biochemical agents such as genes, proteins and RNA molecules amongst others, holds great potential for controlled therapeutic delivery and in promoting tissue regeneration. Electroactive biomaterials have the capability of delivering these agents in a localized, controlled, responsive and efficient manner. These systems have also been combined for the delivery of both physical and biochemical cues and can be programmed to achieve enhanced effects on healing by establishing control over the microenvironment.
View Article and Find Full Text PDFMol Genet Genomic Med
November 2017
Background: Oligodontia is a severe form of tooth agenesis characterized by the absence of six or more permanent teeth. Oligodontia has complex etiology and variations in numerous genes have been suggested as causal for the condition.
Methods: We applied whole-exome sequencing (WES) to identify the cause of oligodontia in a 9-year-old girl missing 11 permanent teeth.
Application of CRISPR-Cas9 technology in diverse organisms has resulted in an explosion of genome modification efforts. To expand the toolbox of applications, we have created an E. coli Exonuclease I (sbcB)-Cas9 fusion that has altered enzymatic activity in zebrafish embryos.
View Article and Find Full Text PDFSmall cell carcinoma of the ovary, hypercalcemic type (SCCOHT), is a rare, highly lethal malignancy predominantly affecting young adult females. We report a patient with widely metastatic SCCOHT and concurrent uterine cervical pleomorphic liposarcoma. Clinical targeted next-generation sequencing was performed on both neoplasms and demonstrated hemizygous stop-gain TP53 mutations (p.
View Article and Find Full Text PDFBackground: The molecular determinants of clinical responses to decitabine therapy in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) are unclear.
Methods: We enrolled 84 adult patients with AML or MDS in a single-institution trial of decitabine to identify somatic mutations and their relationships to clinical responses. Decitabine was administered at a dose of 20 mg per square meter of body-surface area per day for 10 consecutive days in monthly cycles.
The CAP superfamily member, CRISPLD2, has previously been shown to be associated with nonsyndromic cleft lip and palate (NSCLP) in human populations and to be essential for normal craniofacial development in the zebrafish. Additionally, in rodent models, CRISPLD2 has been shown to play a role in normal lung and kidney development. However, the specific role of CRISPLD2 during these developmental processes has yet to be determined.
View Article and Find Full Text PDF