Publications by authors named "Tanaya Kundu"

Seven new inorganic-organic coordination polymer compounds have been synthesized and their structures are determined by single-crystal structure determination. The compounds were prepared by the sequential assembly of a [Cu(mna)] moiety in the presence of a Mn salt and a secondary amine ligand. Of the seven compounds, [{Cu(mna)}Mn(HO)(HO)]·5.

View Article and Find Full Text PDF

The article deals with the newly designed mononuclear and asymmetric dinuclear osmium(ii) complexes Os(II)(bpy)2(HL(2-)) (1) and [(bpy)2Os(II)(μ-HL(2-))Os(II)(bpy)2](Cl)2 ([2](Cl)2)/[(bpy)2Os(II)(μ-HL(2-))Os(II)(bpy)2](ClO4)2 ([2](ClO4)2), respectively, (H3L = 5-(1H-benzo[d]imidazol-2-yl)-1H-imidazole-4-carboxylic acid and bpy = 2,2'-bipyridine). The identity of 1 has been established by its single crystal X-ray structure. The ligand (HL(2-))-based primary oxidation process (E, 0.

View Article and Find Full Text PDF

Bis(acetylacetonato)ruthenium complexes [Ru(acac)2(Q1-3)], 1-3, incorporating redox non-innocent 9,10-phenanthrenequinonoid ligands (Q1 = 9,10-phenanthrenequinone, 1; Q2 = 9,10-phenanthrenequinonediimine, 2; Q3 = 9,10-phenanthrenequinonemonoimine, 3) have been characterised electrochemically, spectroscopically and structurally. The four independent molecules in the unit cell of 2 are involved in intermolecular hydrogen bonding and π-π interactions, leading to a 2D network. The oxidation state-sensitive bond distances of the coordinated ligands Q(n) at 1.

View Article and Find Full Text PDF

The present article deals with a newer class of ligand bridged asymmetric complexes incorporating ancillary ligands (AL) with varying electronic characteristics: [(bpy)2Ru(II)(μ-HL(2-)) Ru(II)(bpy)2](ClO4)2·([1](ClO4)2); [(pap)2Ru(II)(μ-HL(2-))Ru(II)(pap)2](ClO4)2 ([2](ClO4)2); [(bpy)2Ru(II)(μ-HL(2-))Ru(II)(pap)2](ClO4)2 ([3](ClO4)2); [(acac)2Ru(III)(μ-HL(2-))Ru(III)(acac)2] (4) and [(bpy)2Ru(II)(μ-HL(2-))Ru(III)(acac)2]ClO4 ([5]ClO4) (H3L: 5-(1H-benzo[d]imidazol-2-yl)-1H-imidazole-4-carboxylic acid, bpy = moderately π-accepting 2,2'-bipyridine, pap = strongly π-accepting 2-phenylazopyridine, acac(-) = σ-donating acetylacetonate). The molecular identity of [1](ClO4)2 was established by its single crystal X-ray structure. A large shift in Ru(II)/Ru(III) potential of 0.

View Article and Find Full Text PDF

Five diruthenium(II) complexes [Cl(L)Ru(μ-tppz)Ru(L)Cl] (1-5) containing differently substituted β-diketonato derivatives (1: L = 2,4-pentanedionato; 2: L = 3,5-heptanedionato; 3: L = 2,2,6,6-tetramethyl-3,5-heptanedionato; 4: L = 3-methyl-2,4-pentanedionato; 5: L = 3-ethyl-2,4-pentanedionato) as ancillary ligands (L) were synthesized and studied by spectroelectrochemistry (UV-Vis-NIR, electron paramagnetic resonance (EPR)). X-ray structural characterisation revealed anti (1, 2, 5) or syn (3) configuration as well as non-planarity of the bis-tridentate tppz bridge and strong dπ(Ru(II)) → π*(pyrazine, tppz) back-bonding. The widely separated one-electron oxidation steps, Ru(II)Ru(II)/Ru(II)Ru(III) and Ru(II)Ru(III)/Ru(III)Ru(III), result in large comproportionation constants (K(c)) of ≥10(10) for the mixed-valent intermediates.

View Article and Find Full Text PDF

An effective anion sensor, [Ru(II)(bpy)(2)(H(2)L(-))](+) (1(+)), based on a redox and photoactive {Ru(II)(bpy)(2)} moiety and a new ligand (H(3)L = 5-(1H-benzo[d]imidazol-2-yl)-1H-imidazole-4-carboxylic acid), has been developed for selective recognition of fluoride (F(-)) and acetate (OAc(-)) ions. Crystal structures of the free ligand, H(3)L and [1](ClO(4)) reveal the existence of strong intramolecular and intermolecular hydrogen bonding interactions. The structure of [1](ClO(4)) shows that the benzimidazole N-H of H(2)L(-) is hydrogen bonded with the pendant carboxylate oxygen while the imidazole N-H remains free for possible hydrogen bonding interaction with the anions.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores a novel ruthenium complex using the RuCl(μ-tppz)ClRu platform to connect two redox systems featuring o-quinone/catecholate ligands, resulting in stable complexes with distinct redox behavior.
  • The complexes show pronounced near-infrared absorption and unique spin interactions, revealing intricate electronic structures through various analytical methods.
  • Results indicate that the redox properties and interactions differ significantly between the substituted and unsubstituted quinones, highlighting the role of the tppz bridge in the reduction process.
View Article and Find Full Text PDF

The neutral title complexes [(L(1-3))ClRu(II)(mu-tppz)Ru(II)Cl(L(1-3))] [tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine with L(1) = 2-picolinate, L(2) = 2-quinolinecarboxylate (quinaldate) and with the hitherto little used L(3) = 8-quinolinecarboxylate] have been structurally characterized as approximately anti- (1 and 3) and syn-configured isomers (2) with L ligand N (1 and 3) or O atoms (2) trans to the pyrazine N atoms of tppz. In contrast to 1 and 2 with five-membered chelate rings, complex 3 (which is isomeric with 2) contains six-membered chelate rings. Each system 1-3 thus features a significantly different coordination situation, and all complexes exhibit a considerably distorted tppz bridge, including a twisted central pyrazine ring.

View Article and Find Full Text PDF

The paramagnetic ruthenium-biimidazole complexes [(acac)(2)Ru(III)(LH(-))] (1 = red-brown), [(acac)(2)Ru(III)(LH(2))](ClO(4)) (2 = pink) and Bu(4)N[(acac)(2)Ru(III)(L(2-))] (3 = greenish yellow) comprising of monodeprotonated, neutral and bideprotonated states of the coordinated biimidazole ligand (LH(n), n = 1, 2, 0), respectively, have been isolated (acac(-) = acetylacetonate). Single-crystal X-ray diffraction of 1 reveals that the asymmetric unit consists of three independent molecules: A-C, where molecule A corresponds to complex 1 and the other two molecules B and C co-exist as a hydrogen bonded dimeric unit perhaps between the cationic 2(+) and anionic 3(-). The packing diagram further reveals that the molecule A in the crystal of 1 also forms a hydrogen bonded dimer with the neighbouring another unit of molecule A.

View Article and Find Full Text PDF