Purpose: Unplanned health care encounters (UHEs) such as emergency room visits can occur commonly during cancer chemotherapy treatments. Patients at an increased risk of UHEs are typically identified by clinicians using performance status (PS) assessments based on a descriptive scale, such as the Eastern Cooperative Oncology Group (ECOG) scale. Such assessments can be bias prone, resulting in PS score disagreements between assessors.
View Article and Find Full Text PDFJCO Clin Cancer Inform
June 2020
Purpose: Performance status (PS) is a key factor in oncologic decision making, but conventional scales used to measure PS vary among observers. Consumer-grade biometric sensors have previously been identified as objective alternatives to the assessment of PS. Here, we investigate how one such biometric sensor can be used during a clinic visit to identify patients who are at risk for complications, particularly unexpected hospitalizations that may delay treatment or result in low physical activity.
View Article and Find Full Text PDFPurpose: Surgical performance is critical for clinical outcomes. We present a novel machine learning (ML) method of processing automated performance metrics (APMs) to evaluate surgical performance and predict clinical outcomes after robot-assisted radical prostatectomy (RARP).
Materials And Methods: We trained three ML algorithms utilizing APMs directly from robot system data (training material) and hospital length of stay (LOS; training label) (≤2 days and >2 days) from 78 RARP cases, and selected the algorithm with the best performance.