ARPE-19 and Y79 cells were precisely and effectively delivered to form an in vitro retinal tissue model via 3D cell bioprinting technology. The samples were characterized by cell viability assay, haematoxylin and eosin and immunofluorescent staining, scanning electrical microscopy and confocal microscopy, and so forth. The bioprinted ARPE-19 cells formed a high-quality cell monolayer in 14 days.
View Article and Find Full Text PDFThe biological, structural and functional configuration of Bruch's membrane (BM) is significantly relevant to age-related macular degeneration (AMD) and other chorioretinal diseases, and AMD is one of the leading causes of blindness in the elderly worldwide. The configuration may worsen along with the ageing of retinal pigment epithelium and BM that finally leads to AMD. Thus, the scaffold-based tissue-engineered retina provides an innovative alternative for retinal tissue repair.
View Article and Find Full Text PDFIn this article, a hybrid retina construct was created via three-dimensional (3D) bioprinting technology. The construct was composed of a PCL ultrathin membrane, ARPE-19 cell monolayer and Y79 cell-laden alginate/pluronic bioink. 3D bioprinting technology was applied herein to deliver the ARPE-19 cells and Y79 cell-laden bioink to ensure homogeneous ARPE-19 cell seeding; subsequently, two distinctive Y79 cell-seeding patterns were bioprinted on top of the ARPE-19 cell monolayer.
View Article and Find Full Text PDF