Publications by authors named "Tan N Phan"

Derivatives of polythiophene (PT) have garnered considerable attention in organic solar cells (OSCs) because of their relatively uncomplicated molecular structures and cost-effective synthesis. Herein, we have developed two regioisomeric fluorinated PT donors, PEI3T-FITVT and PEI3T-FOTVT, to realize efficient OSCs. PEI3T-FITVT and PEI3T-FOTVT are strategically designed with different fluorine atom arrangements on thiophene-vinyl-thiophene (TVT) units.

View Article and Find Full Text PDF

To realize efficient, green solvent-processable organic solar cells (OSCs), considerable effort has been expended on the development of conjugated materials with both superior optoelectrical properties and processability. However, molecular design strategies that enhance solubility often reduce crystalline/electrical properties of the materials. In this study, we develop three new guest small-molecule acceptors (SMAs) (Y-4C-4O, Y-6C-4O, and Y-12C-4O) featuring inner side chains consisting of terminal oligo(ethylene glycol) (OEG) groups and alkyl spacers of different lengths.

View Article and Find Full Text PDF

Background: Digital health literacy (DHL) enables healthy decisions, improves protective behaviors and adherence to COVID-19 measures, especially during the era of the "infodemic", and enhances psychological well-being.

Objective: We aimed to explore the mediating roles of fear of COVID-19, information satisfaction, and the importance of online information searching on the association between DHL and well-being.

Methods: A cross-sectional web-based survey was conducted among 1631 Taiwanese university students, aged 18 years and above, from June 2021 to March 2022.

View Article and Find Full Text PDF

High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k).

View Article and Find Full Text PDF

Organic solar cells (OSCs) based on conjugated block copolymers (CBCs) have gained considerable attention owing to their simple one-pot solution process. However, their power conversion efficiencies (PCEs) require significant improvement. Furthermore, the majority of efficient CBC-based OSCs are processed using environmentally toxic halogenated solvents.

View Article and Find Full Text PDF

Digital Health Literacy (DHL) helps online users with navigating the infodemic and co-existing conspiracy beliefs to avoid mental distress and maintain well-being. We aimed to investigate the association between DHL and future anxiety (FA); and examine the potential mediation roles of information satisfaction and fear of COVID-19 (F-CoV). A web-based cross-sectional survey was carried out among 1631 Taiwanese university students aged 18 years and above from June 2021 to March 2022.

View Article and Find Full Text PDF

Intrinsically stretchable organic solar cells (IS-OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (P s, PhAmX) featuring phenyl amide (N ,N -bis((5-bromothiophen-2-yl)methyl)isophthalamide, PhAm)-based flexible spacer (FS) inducing hydrogen-bonding (H-bonding) interactions is developed.

View Article and Find Full Text PDF

Highlights: A series of non-conjugated acceptor polymers with flexible conjugation-break spacers (FCBSs) of different lengths were synthesized. The effect of FCBSs length on solubility of the acceptor polymers, and their photovoltaic and mechanical properties in all-polymer solar cells were explored. This work provides useful guidelines for the design of semiconducting polymers by introducing FCBS with proper length, which can giantly improved properties that are not possible to be achieved by the state-of-the-art fully conjugated polymers.

View Article and Find Full Text PDF

Nonfused ring acceptors (NFRAs) have attracted significant attention for nonfullerene organic solar cells (OSCs) owing to their chemical tunability and facile synthesis. In this study, a benzotriazole-based NFRA with chlorinated end groups (Triazole-4Cl) is developed to realize highly efficient and thermally stable NFRA-based OSCs; an analogous NFRA with nonchlorinated end groups (Triazole-H) is synthesized for comparison. Triazole-4Cl film exhibits the high-order packing structure and the near-infrared absorption capability, which are advantageous in charge transport and light harvesting of the resulting OSCs.

View Article and Find Full Text PDF