Publications by authors named "Tamyres Bernadete Dantas Queiroga"

The use of repellents is considered an alternative against biting insects, including Lutzomyia longipalpis (Diptera: Psychodidae), the main vector of the protozoan Leishmania infantum, visceral leishmaniasis's (VL) etiologic agent in the Americas. This study aimed to evaluate the repellent efficacy of icaridin nanostructured solution applied on cotton knitting fabric against L. longipalpis.

View Article and Find Full Text PDF

Background: Triatomines are responsible for the vector transmission of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. Triatoma brasiliensis is the main vector of the parasite in Brazil, and dogs are an important reservoir of the parasite. The aim of this study was to evaluate the insecticidal effect of fluralaner (Bravecto) on T.

View Article and Find Full Text PDF

Resistance or susceptibility to infection is dependent on the host immunological profile. Innate immune receptors, such as Toll-like receptors (TLRs/TLR2, TLR4, TLR7, and TLR9) and Nod-like receptors (NLRs/NOD1 and NLRP3 inflammasome) are involved with the resistance against acute experimental infection. Here, we evaluated the impact of virulence on the expression of innate immune receptors and its products in mice.

View Article and Find Full Text PDF

Background: Leishmania infantum is the etiological agent of visceral leishmaniasis (VL) in the New World, where the sand fly Lutzomyia longipalpis and domestic dogs are considered the main vector and host reservoirs, respectively. Systemic insecticides have been studied as an alternative to control vector-borne diseases, including VL. Fluralaner, an isoxazoline class compound, is a systemic insecticide used in dogs, with proven efficiency against different species of phlebotomine sand flies.

View Article and Find Full Text PDF

Digestive and cardiodigestive forms of Chagas' disease are observed in 2% to 27% of the patients, depending on their geographic location, Trypanosoma cruzi strain and immunopathological responses. The aim of this work was to evaluate the role of NOD2 innate immune receptor in the pathogenesis of the digestive system in Chagas' disease. Patients with digestive form of the disease showed lower mRNA expression of NOD2, higher expression of RIP2 and α-defensin 6, compared to indeterminate form, detected by Real-time PCR in peripheral blood mononuclear cells.

View Article and Find Full Text PDF

Chronic chagasic cardiomyopathy (CCC) is observed in 30% to 50% of the individuals infected by Trypanosoma cruzi and heart failure is the important cause of death among patients in the chronic phase of Chagas disease. Although some studies have elucidated the role of adaptive immune responses involving T and B lymphocytes in cardiac pathogenesis, the role of innate immunity receptors such as Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in CCC pathophysiology has not yet been determined. In this study, we evaluated the association among innate immune receptors (TLR1-9 and nucleotide-binding domain-like receptor protein 3/NLRP3), its adapter molecules (Myd88, TRIF, ASC and caspase-1) and cytokines (IL-1β, IL-6, IL-12, IL-18, IL-23, TNF-α, and IFN-β) with clinical manifestation, digestive and cardiac function in patients with different clinical forms of chronic Chagas disease.

View Article and Find Full Text PDF

Ischemic strokes have been implicated as a cause of death in Chagas disease patients. Inflammation has been recognized as a key component in all ischemic processes, including the intravascular events triggered by vessel interruption, brain damage and repair. In this study, we evaluated the association between inflammatory markers and the death risk (DR) and stroke risk (SR) of patients with different clinical forms of chronic Chagas disease.

View Article and Find Full Text PDF