Publications by authors named "Tamraoui Y"

In advancing sodium-ion battery technology, we introduce a novel application of NaNiZr(PO) with a NASICON structure as an anode material. This research unveils, for the first time, its exceptional ability to maintain high specific capacity and unprecedented cycle stability under extreme current densities up to 1000 mA·g, within a low voltage window of 0.01-2.

View Article and Find Full Text PDF

Lithium-ion batteries (LIBs) have gained considerable attention from the scientific community due to their outstanding properties, such as high energy density, low self-discharge, and environmental sustainability. Among the prominent candidates for anode materials in next-generation LIBs are the spinel ferrites, represented by the MFeO series, which offer exceptional theoretical capacities, excellent reversibility, cost-effectiveness, and eco-friendliness. In the scope of this study, NiMgFeMnO nanoparticles were synthesized using a sol-gel synthesis method and subsequently coated with a carbon layer to further enhance their electrochemical performance.

View Article and Find Full Text PDF

This work synthesized a novel chitosan-loaded MgAl-LDH (LDH = layered double hyroxide) nanocomposite, which was physicochemically characterized, and its performance in As(V) removal and antimicrobial activity was evaluated. Chitosan-loaded MgAl-LDH nanocomposite (CsC@MgAl-LDH) was prepared using cross-linked natural chitosan from shrimp waste and modified by Mg-Al. The main mechanisms predominating the separation of As(V) were elucidated.

View Article and Find Full Text PDF

In this work, a cost-effective chitin-based magnesium oxide (CHt@MgO) biocomposite with excellent anionic methyl orange (MO) dye removal efficiency from water was developed. The CHt@MgO biocomposite was characterized by FT-IR, XRD, SEM-EDX, and TGA/DTG. Results proved the successful synthesis of CHt@MgO biocomposite.

View Article and Find Full Text PDF

In this study, sulfated and carboxylated cellulose nanocrystals (CNC) have been produced from newly identified cellulose-rich bio-sourced material, namely Juncus plant. The Juncus plant stems were firstly subjected to chemical treatments to produce purified cellulose microfibers (CMF) with an average diameter of 3.5 µm and yield of 36%.

View Article and Find Full Text PDF

In this work, sunflower oil cake (SOC) was identified as bio-sourced material for cellulose nanocrystals (CNC) production using chemical treatments followed by sulfuric acid hydrolysis. The hydrolysis was performed at 64% acid concentration, a temperature of 50 °C and at two different hydrolysis times, 15 min (CNC) and 30 min (CNC). It was found that CNC exhibited a diameter of 9 ± 3 nm and 5 ± 2 nm, a length of 354 ± 101 nm and 329 ± 98 nm, a crystallinity of 75% and 87%, a surface charge density of ~1.

View Article and Find Full Text PDF

Synthesis of apatites, Na1-xKxCaPb3(PO4)3 0 ⩽ x ⩽ 1, with anion vacancy were carried out using solid state reactions. The solid solution of apatite-type structure crystallize in the hexagonal system, space group P63/m (No. 176).

View Article and Find Full Text PDF