Publications by authors named "Tamotsu Negoro"

Prediction of human pharmacokinetics is important in the preclinical stage. Values for total clearance of compounds from plasma should be one of the most important pharmacokinetic parameters for predictions. Although several physiological and empirical methods including single-species allometry for prediction of values for human clearance of compounds using humanized-liver mice have been reported, further improvement of prediction accuracies would be still expected.

View Article and Find Full Text PDF

Dermatologic disorders such as atopic dermatitis arise from genetic and environmental causes and are complex and multifactorial in nature. Among possible risk factors, aberrant immunological reactions are one of the leading etiologies. Immunosuppressive agents including topical steroids are common treatments for these disorders.

View Article and Find Full Text PDF

We describe here a novel GPR119 agonist 24, which showed a potent and long-acting hypoglycemic effect in rats via oral dosing. For the discovery of 24, we chose compound 5, which possessed an oxadiazole linker, as a lead compound among our spirocyclic cyclohexane GPR119 agonist series, taking into account its lower plasma protein binding nature. 3,5-Difluoro and 4-methylsulfonylmethy groups on the left side phenyl group, and a gem-difluoro group on the right side of 24 are important for its agonist potency and metabolic stability, respectively.

View Article and Find Full Text PDF

We describe here the generation of a lead compound and its optimization studies that led to the identification of a novel GPR119 agonist. Based on a spirocyclic cyclohexane structure reported in our previous work, we identified compound 8 as a lead compound, being guided by ligand-lipophilicity efficiency (LLE), which linked potency and lipophilicity. Subsequent optimization studies of 8 for improvement of solubility afforded representative 21.

View Article and Find Full Text PDF

SCD1 is a rate-limiting enzyme in the conversion of saturated fatty acids to monounsaturated fatty acids. SCD1 inhibitors have potential effects on obesity, diabetes, acne, and cancer, but the adverse effects associated with SCD1 inhibition in the skin and eyelids are impediments to clinical development. To avoid mechanism-based adverse effects, we explored the compounds that selectively inhibit SCD1 in the liver in an ex vivo assay.

View Article and Find Full Text PDF

Classic glucocorticoids that have outstanding anti-inflammatory effects are still widely prescribed for the treatment of various inflammatory and autoimmune diseases. Conversely, glucocorticoids cause numerous unwanted side effects, particularly systemically dosed glucocorticoids. Therefore, selective glucocorticoid receptor modulator (SGRM), which maintains beneficial anti-inflammatory effects while reducing the occurrence of side effects, is one of the most anticipated drugs.

View Article and Find Full Text PDF

In typical kinase inhibitor programs, a hinge binder showing best potency with preferential specificity is initially selected, followed by fine-tuning of the accompanying substituents on its core module. A shortcoming of this approach is that the exclusive focus on a single chemotype can endanger all the analogues in the series if a critical shortcoming is revealed. Thus, an early evaluation of structure-activity relationships (SARs) can mitigate unforeseen outcomes within a series of multiple compounds, although there have been very few examples to follow such a policy.

View Article and Find Full Text PDF

JTP-59557 [(-)-4-(2-tert-Butyl-4,5-dichlorophenyl)-5-(5-trifluoromethylpyridin-2-ylsulfanyl)-4H-[1,2,4]triazol-3-ol] showed an inhibitory effect on Na(+)-dependent inorganic phosphate (Pi) transport in intestinal brush border membrane vesicles with an IC(50) value of 0.40 microM in rabbit and with an IC(50) of 0.19 microM in rat, without affecting Na(+)-independent Pi and Na(+)-dependent d-glucose transport activities.

View Article and Find Full Text PDF

Mechanisms of relaxation of longitudinal muscle of the distal colon induced by exogenously added pituitary adenylate cyclase activating peptide (PACAP) were studied in 2- to 30-week-old Wistar rats. Exogenous PACAP induced very significant relaxation of the longitudinal muscle in 2-week-old rats, but this effect decreased significantly with age. The cyclic AMP-cyclic AMP-dependent protein kinase (PKA) pathway and the tyrosine kinase-small conductance Ca2+-activated K+ channel (SK channel) pathway were found to be involved in the mechanism of PACAP-induced relaxation.

View Article and Find Full Text PDF