Publications by authors named "Tammy Trudeau"

Purpose: The ETS transcription factor ESE-1 has been shown to be important in HER2 breast cancer and ESE-1 mRNA expression has been shown to associate with prognostic outcomes in the HER2 subtype, as well as in ER, HER2 luminal B patients. However, the clinical significance of ESE-1 protein expression remains unknown. The purpose of the current exploratory study is to evaluate the prognostic value of ESE-1 protein expression in molecular breast cancer subtypes with special emphasis on hormone receptor positive HER2(HR HER2) and the HER2 positive (HER2-only) breast cancer patients.

View Article and Find Full Text PDF

The highly tunable, noninvasive and spatially targeted nature of microbubble-enhanced, ultrasound-guided (MB+US) drug delivery makes it desirable for a wide variety of therapies. In breast cancer, both HER2 and HER2 type neoplasms pose significant challenges to conventional therapeutics in greater than 40% of breast cancer patients, even with the widespread application of biologics such as trastuzumab. To address this therapeutic challenge, we examined the novel combination of tumor-injected microbubble-bound siRNA complexes and monodisperse size-isolated microbubbles (4-µm diameter) to attenuate tumor growth , as well as MB+US-facilitated shRNA and siRNA knockdown of ESE-1, an effector linked to dysregulated HER2 expression in HER2 cell line propagation.

View Article and Find Full Text PDF

Distinct cell types have been shown to respond to activated Ras signaling in a cell-specific manner. In contrast to its pro-tumorigenic role in some human epithelial cancers, oncogenic Ras triggers differentiation of pheochromocytoma cells and medullary thyroid carcinoma cells. Furthermore, we have previously demonstrated that in pituitary somatolactotropes, activated Ras promotes differentiation and is not sufficient to drive tumorigenesis.

View Article and Find Full Text PDF

Prolactin-secreting adenomas, or prolactinomas, cause hypogonadism, osteoporosis, and infertility. Although dopamine agonists (DAs) are used clinically to treat prolactinoma and reduce prolactin secretion via cAMP inhibition, the precise mechanism by which DAs inhibit lactotrope proliferation has not been defined. In this study, we report that phosphatidylinositol 3-kinase (PI3K) signals through AKT and mTOR to drive proliferation of pituitary somatolactotrope GH4T2 cells.

View Article and Find Full Text PDF

Microbubbles interact with ultrasound to induce transient microscopic pores in the cellular plasma membrane in a highly localized thermo-mechanical process called sonoporation. Theranostic applications of in vitro sonoporation include molecular delivery (e.g.

View Article and Find Full Text PDF

The signaling pathways that govern the lactotrope-specific differentiated phenotype, and those that control lactotrope proliferation in both physiological and pathological lactotrope expansion, are poorly understood. Moreover, the specific role of MAPK signaling in lactotrope proliferation vs differentiation, whether activated phosphorylated MAPK is sufficient for prolactinoma tumor formation remain unknown. Given that oncogenic Ras mutations and persistently activated phosphorylated MAPK are found in human tumors, including prolactinomas and other pituitary tumors, a better understanding of the role of MAPK in lactotrope biology is required.

View Article and Find Full Text PDF

Integral membrane proteins of neuroendocine dense-core vesicles (DCV) appear to undergo multiple rounds of exocytosis; however, their trafficking and site of incorporation into nascent DCVs is unclear. Previous studies with phogrin (IA-2beta) identified sorting signals in the luminal domain that is cleaved post-translationally; we now describe an independent DCV targeting motif in the cytosolic domain that may function at the level of endocytosis and recycling. Pulse-chase radiolabeling and cell surface biotinylation experiments in the pituitary corticotroph cell line AtT20 showed that the mature 60/65 kDa form that resides in the DCV is generated by limited proteolysis in a post-trans Golgi network compartment with similar kinetics to the formation of the principal cargo, ACTH.

View Article and Find Full Text PDF