Sequence-specific fluorescent probes for RNA are widely used in microscopy applications such as fluorescence in situ hybridization and a growing number of newer approaches to live-cell RNA imaging. The sequence specificity of most of these approaches relies on differential hybridization of the probe to the correct target. Competing sequences with only one or two base mismatches are prone to causing off-target recognition.
View Article and Find Full Text PDFDNA damage has been implicated in numerous human diseases, particularly cancer, and the aging process. Single-base lesions and mismatches in DNA can be cytotoxic or mutagenic and are recognized by a DNA glycosylase during the process of base excision repair. Altered local dynamics and conformational properties in damaged DNAs have previously been suggested to assist in recognition and specificity.
View Article and Find Full Text PDFWe have developed a family of unnatural base pairs (UBPs), exemplified by the pair formed between dNaM and dTPT3, for which pairing is mediated not by complementary hydrogen bonding but by hydrophobic and packing forces. These UBPs enabled the creation of the first semisynthetic organisms (SSOs) that store increased genetic information and use it to produce proteins containing noncanonical amino acids. However, retention of the UBPs was poor in some sequence contexts.
View Article and Find Full Text PDFMany candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.
View Article and Find Full Text PDFThe solution structures of two different DNA duplexes (one containing a G-T mismatched base pair and the other a non-hydrogen-bonding G-F pair, where F is difluorotoluene) in complex with the peptide antibiotic actinomycin D (ActD) are presented. Using (1)H, (19)F NMR, and molecular dynamics simulations, we show that there are three major differences between the complexes: (1) ActD binds to the GF duplex in an orientation that is flipped 180° relative to its position in the GT duplex; (2) whereas the difluorotoluene moiety takes the typical anti glycosidic conformation in the "free" (uncomplexed) GF duplex, it takes the syn conformation in the GF:ActD complex; and (3) in GF:ActD, the difluorotoluene moiety is completely unstacked in the helix; however, the guanine of the G-F pair is stacked quite well with the ActD intercalator and the flanking base on the 5' side. In GT:ActD, the G-T base pair (although pushed into the major groove from the non-Watson-Crick hydrogen-bonding pattern) stacks favorably with the ActD intercalator and the flanking base pair on the 5' side.
View Article and Find Full Text PDFAs part of an ongoing effort to expand the genetic alphabet for in vitro and eventual in vivo applications, we have synthesized a wide variety of predominantly hydrophobic unnatural base pairs and evaluated their replication in DNA. Collectively, the results have led us to propose that these base pairs, which lack stabilizing edge-on interactions, are replicated by means of a unique intercalative mechanism. Here, we report the synthesis and characterization of three novel derivatives of the nucleotide analogue dMMO2, which forms an unnatural base pair with the nucleotide analogue d5SICS.
View Article and Find Full Text PDFThe incorporation of synthetic nucleoside analogues into DNA duplexes provides a unique opportunity to probe both structure and function of nucleic acids. We used 1H and 19F NMR and molecular dynamics calculations to determine the solution structures of two similar DNA decamer duplexes, one containing a central G-T mismatched or "wobble" base pair, and one in which the thymine in this base pair is replaced by difluorotoluene (a thymine isostere) creating a G-F pair. Here, we show that the non-hydrogen-bonding G-F pair stacks relatively well into the helix and that the distortions caused by each non-Watson-Crick G-T or G-F base pair are quite localized to a three base pair site around the mismatch.
View Article and Find Full Text PDFExpansion of the genetic alphabet has been a long-time goal of chemical biology. A third DNA base pair that is stable and replicable would have a great number of practical applications and would also lay the foundation for a semisynthetic organism. We have reported that DNA base pairs formed between deoxyribonucleotides with large aromatic, predominantly hydrophobic nucleobase analogues, such as propynylisocarbostyril (dPICS), are stable and efficiently synthesized by DNA polymerases.
View Article and Find Full Text PDFThe solution structure of a cyclic polyamide ligand complexed to a DNA oligomer, derived from NMR restrained molecular mechanics, is presented. The polyamide, cyclo-gamma-ImPyPy-gamma-PyPyPy-, binds to target DNA with a nanomolar dissociation constant as characterized by quantitative footprinting previously reported. 2D (1)H NMR data were used to generate distance restraints defining the structure of this cyclic polyamide with the DNA duplex d(5'-GCCTGTTAGCG-3'):d(5'-CGCTAACAGGC-3').
View Article and Find Full Text PDF