Advances in sequencing technologies and declining costs are increasing the accessibility of large-scale biodiversity genomic datasets. To maximize the impact of these data, a careful, considered approach to data management is essential. However, challenges associated with the management of such datasets remain, exacerbated by uncertainty among the research community as to what constitutes best practices.
View Article and Find Full Text PDFThe unprecedented loss of global biodiversity is linked to multiple anthropogenic stressors. New conservation technologies are urgently needed to mitigate this loss. The rights, knowledge and perspectives of Indigenous peoples in biodiversity conservation-including the development and application of new technologies-are increasingly recognised.
View Article and Find Full Text PDFThe kākāpō is a critically endangered, intensively managed, long-lived nocturnal parrot endemic to Aotearoa New Zealand. We generated and analysed whole-genome sequence data for nearly all individuals living in early 2018 (169 individuals) to generate a high-quality species-wide genetic variant callset. We leverage extensive long-term metadata to quantify genome-wide diversity of the species over time and present new approaches using probabilistic programming, combined with a phenotype dataset spanning five decades, to disentangle phenotypic variance into environmental and genetic effects while quantifying uncertainty in small populations.
View Article and Find Full Text PDFThere is growing interest in the role of structural variants (SVs) as drivers of local adaptation and speciation. From a biodiversity genomics perspective, the characterization of genome-wide SVs provides an exciting opportunity to complement single nucleotide polymorphisms (SNPs). However, little is known about the impacts of SV discovery and genotyping strategies on the characterization of genome-wide SV diversity within and among populations.
View Article and Find Full Text PDFBackground: Animal conservation often requires intensive management actions to improve reproductive output, yet any adverse effects of these may not be immediately apparent, particularly in threatened species with small populations and long lifespans. Hand-rearing is an example of a conservation management strategy which, while boosting populations, can cause long-term demographic and behavioural problems. It is used in the recovery of the critically endangered kākāpō (), a flightless parrot endemic to New Zealand, to improve the slow population growth that is due to infrequent breeding, low fertility and low hatching success.
View Article and Find Full Text PDFSpecies recovery programs are increasingly using genomic data to measure neutral genetic diversity and calculate metrics like relatedness. While these measures can inform conservation management, determining the mechanisms underlying inbreeding depression requires information about functional genes associated with adaptive or maladaptive traits. Toll-like receptors (TLRs) are one family of functional genes, which play a crucial role in recognition of pathogens and activation of the immune system.
View Article and Find Full Text PDFRelationships with place provide critical context for characterizing biocultural diversity. Yet, genetic and genomic studies are rarely informed by Indigenous or local knowledge, processes, and practices, including the movement of culturally significant species. Here, we show how place-based knowledge can better reveal the biocultural complexities of genetic or genomic data derived from culturally significant species.
View Article and Find Full Text PDFResearchers have long debated which estimator of relatedness best captures the degree of relationship between two individuals. In the genomics era, this debate continues, with relatedness estimates being sensitive to the methods used to generate markers, marker quality, and levels of diversity in sampled individuals. Here, we compare six commonly used genome-based relatedness estimators (kinship genetic distance [KGD], Wang maximum likelihood [TrioML], Queller and Goodnight [R ], Kinship INference for Genome-wide association studies [KING-robust), and pairwise relatedness [R ], allele-sharing coancestry [AS]) across five species bred in captivity-including three birds and two mammals-with varying degrees of reliable pedigree data, using reduced-representation and whole genome resequencing data.
View Article and Find Full Text PDFStructural variants (SVs) are large rearrangements (>50 bp) within the genome that impact gene function and the content and structure of chromosomes. As a result, SVs are a significant source of functional genomic variation, that is, variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic variation in threatened species via single nucleotide polymorphism (SNP) data sets, SVs remain understudied despite their potential influence on fitness traits of conservation interest.
View Article and Find Full Text PDFStatistically robust monitoring of threatened populations is essential for effective conservation management because the population trend data that monitoring generates is often used to make decisions about when and how to take action. Despite representing the highest proportion of threatened animals globally, the development of best practice methods for monitoring populations of threatened insects is relatively uncommon. Traditionally, population trend data for the Nationally Endangered New Zealand grasshopper Brachaspis robustus has been determined by counting all adults and nymphs seen on a single ~1.
View Article and Find Full Text PDFConservation management strategies for many highly threatened species include conservation breeding to prevent extinction and enhance recovery. Pairing decisions for these conservation breeding programmes can be informed by pedigree data to minimize relatedness between individuals in an effort to avoid inbreeding, maximize diversity and maintain evolutionary potential. However, conservation breeding programmes struggle to use this approach when pedigrees are shallow or incomplete.
View Article and Find Full Text PDFThreatened species recovery programmes benefit from incorporating genomic data into conservation management strategies to enhance species recovery. However, a lack of readily available genomic resources, including conspecific reference genomes, often limits the inclusion of genomic data. Here, we investigate the utility of closely related high-quality reference genomes for single nucleotide polymorphism (SNP) discovery using the critically endangered kakī/black stilt ( ) and four Charadriiform reference genomes as proof of concept.
View Article and Find Full Text PDFIn many species, males can make rapid adjustments to ejaculate performance in response to sperm competition risk; however, the mechanisms behind these changes are not understood. Here, we manipulate male social status in an externally fertilising fish, chinook salmon (), and find that in less than 48 hr, males can upregulate sperm velocity when faced with an increased risk of sperm competition. Using a series of sperm manipulation and competition experiments, we show that rapid changes in sperm velocity are mediated by seminal fluid and the effect of seminal fluid on sperm velocity directly impacts paternity share and therefore reproductive success.
View Article and Find Full Text PDFThere is contentious debate surrounding the merits of de-extinction as a biodiversity conservation tool. Here, we use extant analogues to predict conservation actions for potential de-extinction candidate species from New Zealand and the Australian state of New South Wales, and use a prioritization protocol to predict the impacts of reintroducing and maintaining populations of these species on conservation of extant threatened species. Even using the optimistic assumptions that resurrection of species is externally sponsored, and that actions for resurrected species can share costs with extant analogue species, public funding for conservation of resurrected species would lead to fewer extant species that could be conserved, suggesting net biodiversity loss.
View Article and Find Full Text PDFSeveral reviews in the past decade have heralded the benefits of embracing high-throughput sequencing technologies to inform conservation policy and the management of threatened species, but few have offered practical advice on how to expedite the transition from conservation genetics to conservation genomics. Here, we argue that an effective and efficient way to navigate this transition is to capitalize on emerging synergies between conservation genetics and primary industry (e.g.
View Article and Find Full Text PDFHere we present the results of a large-scale bioinformatics annotation of non-coding RNA loci in 48 avian genomes. Our approach uses probabilistic models of hand-curated families from the Rfam database to infer conserved RNA families within each avian genome. We supplement these annotations with predictions from the tRNA annotation tool, tRNAscan-SE and microRNAs from miRBase.
View Article and Find Full Text PDFOne of the most common questions asked before starting a new population genetic study using microsatellite allele frequencies is "how many individuals do I need to sample from each population?" This question has previously been answered by addressing how many individuals are needed to detect all of the alleles present in a population (i.e. rarefaction based analyses).
View Article and Find Full Text PDFBeak and feather disease virus (BFDV) infections are often fatal to both captive and wild parrot populations. Its recent discovery in a wild population of native red-fronted parakeets has raised concerns for the conservation of native parrots, all of which are threatened or endangered. The question of a recent introduction versus a native genotype of the virus poses different conservation-management challenges, and thus, a clear understanding of the molecular phylogeny of BDFV is a crucial step towards integrated management planning.
View Article and Find Full Text PDFPelagic seabirds are highly mobile, reducing the likelihood of allopatric speciation where disruption of gene flow between populations is caused by physically insurmountable, extrinsic barriers. Spatial segregation during the non-breeding season appears to provide an intrinsic barrier to gene flow among seabird populations that otherwise occupy nearby or overlapping regions during breeding, but how this is achieved remains unclear. Here we show that the two genetically distinct populations of Cook's petrel (Pterodroma cookii) exhibit transequatorial separation of non-breeding ranges at contemporary (ca.
View Article and Find Full Text PDFHybridization facilitated by human activities has dramatically altered the evolutionary trajectories of threatened taxa around the globe. Whereas introduced mammalian predators and widespread habitat loss and degradation clearly imperil the recovery and survival of the New Zealand endemic black stilt or kakī (Himantopus novaezelandiae), the risk associated with hybridization between this critically endangered endemic and its self-introduced congener, the pied stilt or poaka (Himantopus himantopus leucocephalus) is less clear. Here, we combine Bayesian admixture analyses of microsatellite data with mitochondrial DNA sequence data to assess the levels of hybridization and introgression between kakī and poaka.
View Article and Find Full Text PDFAncient DNA has revolutionized the way in which evolutionary biologists research both extinct and extant taxa, from the inference of evolutionary history to the resolution of taxonomy. Here, we present, to our knowledge, the first study to report the rediscovery of an 'extinct' avian taxon, the Tasman booby (Sula tasmani), using classical palaeontological data combined with ancient and modern DNA data. Contrary to earlier work, we show an overlap in size between fossil and modern birds in the North Tasman Sea (classified currently as S.
View Article and Find Full Text PDFEight polymorphic microsatellite primer pairs were developed for the critically endangered New Zealand black stilt, Himantopus novaezelandiae, representing the first microsatellite markers available for birds in the family Recurvirostridae. The number of alleles ranged from two to four per locus. Observed and expected heterozygosities ranged from 0.
View Article and Find Full Text PDF