Publications by authors named "Tammy Dellovade"

Human microglia are critically involved in Alzheimer's disease (AD) progression, as shown by genetic and molecular studies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 32 human donors along progression of AD pathology, both in time-from early to late pathology-and in space-from entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)-with biochemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, including microglia.

View Article and Find Full Text PDF

In mice, dietary cuprizone causes brain demyelination with subsequent spontaneous remyelination upon return to normal chow. Heavy water (HO) labeling with mass spectrometric analysis can be used to measure brain de novo synthesis of several myelin components including cholesterol, phospholipids, galactocereboside (GalC) and myelin-associated proteins. 24-hydroxycholesterol (24-OHC), the major metabolite of brain cholesterol, is detected in blood and is believed to be specifically derived from CNS cholesterol metabolism.

View Article and Find Full Text PDF

Background: Mouse models that overexpress human mutant Tau (P301S and P301L) are commonly used in preclinical studies of Alzheimer's Disease (AD) and while several drugs showed therapeutic effects in these mice, they were ineffective in humans. This leads to the question to which extent the murine models reflect human Tau pathology on the molecular level.

Methods: We isolated insoluble, aggregated Tau species from two common AD mouse models during different stages of disease and characterized the modification landscape of the aggregated Tau using targeted and untargeted mass spectrometry-based proteomics.

View Article and Find Full Text PDF

In this study we aimed to reduce tau pathology, a hallmark of Alzheimer's Disease (AD), by activating mTOR-dependent autophagy in a transgenic mouse model of tauopathy by long-term dosing of animals with mTOR-inhibitors. Rapamycin treatment reduced the burden of hyperphosphorylated and aggregated pathological tau in the cerebral cortex only when applied to young mice, prior to the emergence of pathology. Conversely, PQR530 which exhibits better brain exposure and superior pharmacokinetic properties, reduced tau pathology even when the treatment started after the onset of pathology.

View Article and Find Full Text PDF
Article Synopsis
  • Antigen-specific immunotherapy, using ATX-MS-1467, offers a targeted treatment for multiple sclerosis by focusing on disease-associated T-cell epitopes from myelin basic protein (MBP).
  • In a mouse model of multiple sclerosis, ATX-MS-1467 treatment not only improved clinical symptoms and reduced inflammation but also restored blood-brain barrier integrity after established disease.
  • The therapy promotes a shift in the immune response from inflammation to tolerance, suggesting it could help in managing multiple sclerosis, especially in its early stages.
View Article and Find Full Text PDF

Inhibition of microtubule affinity regulating kinase (MARK) represents a potentially attractive means of arresting neurofibrillary tangle pathology in Alzheimer's disease. This manuscript outlines efforts to optimize a pyrazolopyrimidine series of MARK inhibitors by focusing on improvements in potency, physical properties and attributes amenable to CNS penetration. A unique cylcyclohexyldiamine scaffold was identified that led to remarkable improvements in potency, opening up opportunities to reduce MW, Pgp efflux and improve pharmacokinetic properties while also conferring improved solubility.

View Article and Find Full Text PDF

Neurosteroids such as progesterone and allopregnanolone have been shown to exert neuroprotective effects under a variety of pathological or insult conditions, and there is evidence that the neurosteroid system is perturbed in Multiple Sclerosis (MS) patients. Neurosteroids are synthesized in the central nervous system (CNS) through a series of metabolic transformations, beginning with a rate-limiting step of cholesterol transport through the outer mitochondrial membrane via the transporter translocator protein (TSPO). We examined the effects of etifoxine and XBD-173, two different brain penetrant TSPO agonists, for their ability to ameliorate clinical signs in two different experimental autoimmune encephalitis (EAE) models.

View Article and Find Full Text PDF

Neurofibrillary tangles (NFT), mainly consisting of fibrillar aggregates of hyperphosphorylated tau, are a defining pathological feature of Alzheimer's Disease and other tauopathies. Progressive accumulation of tau into NFT is considered to be a toxic cellular event causing neurodegeneration. Tau is subject to O-linked N-acetylglucosamine (O-GlcNAc) modification and O-GlcNAcylation of tau has been suggested to regulate tau phosphorylation.

View Article and Find Full Text PDF

Object: Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration.

View Article and Find Full Text PDF

The molecular determinants of Sonic Hedgehog (Shh) signaling in mammalian cells and, in particular, those of the CNS are unclear. Here we report that primary cortical astrocyte cultures are highly responsive to both Shh protein and Hh Agonist 1.6, a selective, small molecule Smoothened agonist.

View Article and Find Full Text PDF

The hedgehog pathway is a major regulator of embryonic development, and mutations that decrease its activity are known to be associated with severe defects in nervous system development. Recent evidence suggests hedgehog continues to function in adult tissue, normal as well as diseased, by regulating both cell proliferation and the production of growth and angiogenic factors. In the adult nervous system, this dual ability is especially important in regulating the behavior of neural stem and progenitor cells.

View Article and Find Full Text PDF

Although the distribution of estrogen receptor beta (ERbeta) immunoreactivity in the rat central nervous has been reported, no such data are available in the mouse. The present study used in vivo autoradiography utilizing a (125)I-estrogen that has equal binding affinity for both receptors as well as immunohistochemistry for ERbeta and ERalpha, to investigate and compare the distribution of the two ERs in the mouse CNS. The use specific antisera against ERalpha and ERbeta allowed us to evaluate the contribution of these receptors to the binding detected with autoradiography.

View Article and Find Full Text PDF

Estrogen has been demonstrated to protect against brain injury, neurodegeneration, and cognitive decline. Furthermore, estrogen seems to specifically protect cortical and hippocampal neurons from ischemic injury. Here our data evaluating the neuroprotective effects of estrogens, the selective estrogen receptor modulators (SERMs), and estrogen receptor alpha- and beta-selective ligands in animal models of ischemic injury are discussed.

View Article and Find Full Text PDF

Neurokinin B (NKB) gene expression is elevated in the infundibular (arcuate) nucleus of the hypothalamus in postmenopausal women. Estrogen replacement decreases both the number of NKB mRNA-expressing neurons and the level of expression within individual cells. Similarly, NKB gene expression is elevated in ovariectomized rats and reduced after estrogen treatment.

View Article and Find Full Text PDF

To directly test the requirement for hedgehog signaling in the telencephalon from early neurogenesis, we examined conditional null alleles of both the Sonic hedgehog and Smoothened genes. While the removal of Shh signaling in these animals resulted in only minor patterning abnormalities, the number of neural progenitors in both the postnatal subventricular zone and hippocampus was dramatically reduced. In the subventricular zone, this was partially attributable to a marked increase in programmed cell death.

View Article and Find Full Text PDF

Kallmann syndrome is hypogonadotropic hypogonadism coupled with anosmia. A morphological study found that the endocrine disorder in X-linked Kallmann syndrome is due to failed migration of gonadotropin releasing-hormone (GnRH) neurons from the olfactory placode to the brain during development. Anosmia results from agenesis of the olfactory bulbs and tracts.

View Article and Find Full Text PDF

Oxytocin is an important modulator of female reproductive functions including parturition, lactation and maternal behavior, while vasopressin regulates water balance and acts as a neurotransmitter. For decades, it has been suggested that estrogen regulates the production and/or release of oxytocin and vasopressin in the rodent brain. Although several studies demonstrated that estrogen can modulate vasopressin mRNA levels in regions known to contain estrogen receptor (ER), such as the bed nucleus of the stria terminalis and medial amygdala, data from the paraventricular and supraoptic nuclei were inconclusive.

View Article and Find Full Text PDF

Early studies found estrogen-binding sites in the ER knockout (ERalphaKO) mouse brain, suggesting a splice variant of ERalpha or another ER. The discovery of ERbeta suggested that binding was due to ERbeta, although questions about an ERgamma remained. To test this hypothesis, ERbetaKO mice were generated and crossed with ERalphaKO mice, and ERalpha/betaKO animals were used for in vivo binding studies with [(125)I]estrogen.

View Article and Find Full Text PDF