Appl Environ Microbiol
April 2022
Over the last decade, the genomes of several strains have been sequenced, delivering valuable insights into their genetic makeup. However, bifidobacterial genomes have not yet been systematically mined for genes associated with stress response functions and their regulation. In this work, a list of 76 genes related to stress response in bifidobacteria was compiled from previous studies.
View Article and Find Full Text PDFLactococcus lactis strains are important components in industrial starter cultures for cheese manufacturing. They have many strain-dependent properties, which affect the final product. Here, we explored the use of machine learning to create systematic, high-throughput screening methods for these properties.
View Article and Find Full Text PDFBackground: Filamentous fungi produce a vast amount of bioactive secondary metabolites (SMs) synthesized by e.g. hybrid polyketide synthase-nonribosomal peptide synthetase enzymes (PKS-NRPS; NRPS-PKS).
View Article and Find Full Text PDFFilamentous fungi produce a vast number of bioactive secondary metabolites (SMs), some of which have found applications in the pharmaceutical industry including as antibiotics and immunosuppressants. As more and more species are whole genome sequenced the number of predicted clusters of genes for SM biosynthesis is ever increasing - holding a promise of novel useful bioactive SMs. To be able to fully utilize the potential of novel SMs, it is necessary to link the SM and the genes responsible for producing it.
View Article and Find Full Text PDFFungal secondary metabolites are a rich source of valuable natural products, and genome sequencing has revealed a proliferation of predicted biosynthetic gene clusters in the genomes. However, it is currently an unfeasible task to characterize all biosynthetic gene clusters and to identify possible uses of the compounds. Therefore, a rational approach is needed to identify a short list of gene clusters responsible for producing valuable compounds.
View Article and Find Full Text PDFThe increased interest in secondary metabolites (SMs) has driven a number of genome sequencing projects to elucidate their biosynthetic pathways. As a result, studies revealed that the number of secondary metabolite gene clusters (SMGCs) greatly outnumbers detected compounds, challenging current methods to dereplicate and categorize this amount of gene clusters on a larger scale. Here, we present an automated workflow for the genetic dereplication and analysis of secondary metabolism genes in fungi.
View Article and Find Full Text PDFAspergillus section Nigri comprises filamentous fungi relevant to biomedicine, bioenergy, health, and biotechnology. To learn more about what genetically sets these species apart, as well as about potential applications in biotechnology and biomedicine, we sequenced 23 genomes de novo, forming a full genome compendium for the section (26 species), as well as 6 Aspergillus niger isolates. This allowed us to quantify both inter- and intraspecies genomic variation.
View Article and Find Full Text PDFNovofumigatonin (1), isolated from the fungus Aspergillus novofumigatus, is a heavily oxygenated meroterpenoid containing a unique orthoester moiety. Despite the wide distribution of orthoesters in nature and their biological importance, little is known about the biogenesis of orthoesters. Here we show the elucidation of the biosynthetic pathway of 1 and the identification of key enzymes for the orthoester formation by a series of CRISPR-Cas9-based gene-deletion experiments and in vivo and in vitro reconstitutions of the biosynthesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2018
The fungal genus of is highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse species (, , , and ) have been whole-genome PacBio sequenced to provide genetic references in three sections.
View Article and Find Full Text PDFBackground: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus.
View Article and Find Full Text PDFSynth Syst Biotechnol
June 2016
Introduction: Secondary metabolites of fungi are receiving an increasing amount of interest due to their prolific bioactivities and the fact that fungal biosynthesis of secondary metabolites often occurs from co-regulated and co-located gene clusters. This makes the gene clusters attractive for synthetic biology and industrial biotechnology applications. We have previously published a method for accurate prediction of clusters from genome and transcriptome data, which could also suggest cross-chemistry, however, this method was limited both in the number of parameters which could be adjusted as well as in user-friendliness.
View Article and Find Full Text PDFThe Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic growth requirements. Although most Firmicutes are Gram positive, members of the class Negativicutes, including the genus Veillonella, stain Gram negative.
View Article and Find Full Text PDFIntroduction: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes.
View Article and Find Full Text PDFBackground: Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects.
View Article and Find Full Text PDFBackground: The preferred habitat of a given bacterium can provide a hint of which types of enzymes of potential industrial interest it might produce. These might include enzymes that are stable and active at very high or very low temperatures. Being able to accurately predict this based on a genomic sequence, would thus allow for an efficient and targeted search for production organisms, reducing the need for culturing experiments.
View Article and Find Full Text PDFBackground: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e.
View Article and Find Full Text PDFThirty-two genome sequences of various Vibrionaceae members are compared, with emphasis on what makes V. cholerae unique. As few as 1,000 gene families are conserved across all the Vibrionaceae genomes analysed; this fraction roughly doubles for gene families conserved within the species V.
View Article and Find Full Text PDF