Astrocytic GLT-1 glutamate transporters ensure the fidelity of glutamic neurotransmission by spatially and temporally limiting glutamate signals. The ability to limit neuronal hyperactivity relies on the localization and diffusion of GLT-1 on the astrocytic surface, however, little is known about the underlying mechanisms. We show that two isoforms of GLT-1, GLT-1a and GLT-1b, form nanoclusters on the surface of transfected astrocytes and HEK-293 cells.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) forms a continuous and dynamic network throughout a neuron, extending from dendrites to axon terminals, and axonal ER dysfunction is implicated in several neurological disorders. In addition, tight junctions between the ER and plasma membrane (PM) are formed by several molecules including Kv2 channels, but the cellular functions of many ER-PM junctions remain unknown. Recently, dynamic Ca uptake into the ER during electrical activity was shown to play an essential role in synaptic transmission.
View Article and Find Full Text PDFIon channels are well known for their ability to regulate the cell membrane potential. However, many ion channels also have functions that do not involve ion conductance. Kv2 channels are one family of ion channels whose non-conducting functions are central to mammalian cell physiology.
View Article and Find Full Text PDFThe voltage-dependent potassium channel Kv1.3 participates in the immune response. Kv1.
View Article and Find Full Text PDFThe Kv2 channels encode delayed rectifier currents that regulate membrane potential in many tissues. They also have a non-conducting function to form stable junctions between the endoplasmic reticulum and plasma membranes, creating membrane contact sites that mediate functions distinct from membrane excitability. Therefore, proteins that interact with Kv2.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2020
The voltage-gated sodium channel Na1.6 is associated with more than 300 cases of epileptic encephalopathy. Na1.
View Article and Find Full Text PDFThe voltage-gated potassium channel Kv1.3 plays a crucial role during the immune response. The channel forms oligomeric complexes by associating with several modulatory subunits.
View Article and Find Full Text PDFChannels (Austin)
December 2020
Voltage gated sodium channels (Na) play a crucial role in action potential initiation and propagation. Although the discovery of Na channels dates back more than 65 years, and great advances in understanding their localization, biophysical properties, and links to disease have been made, there are still many questions to be answered regarding the cellular and molecular mechanisms involved in Na channel trafficking, localization and regulation. This review summarizes the different trafficking mechanisms underlying the polarized Na channel localization in neurons, with an emphasis on the axon initial segment (AIS), as well as discussing the latest advances regarding how neurons regulate their excitability by modifying AIS length and location.
View Article and Find Full Text PDFMicroglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain.
View Article and Find Full Text PDFThe voltage-dependent potassium (Kv) channel Kv1.3 regulates leukocyte proliferation, activation, and apoptosis, and altered expression of this channel is linked to autoimmune diseases. Thus, the fine-tuning of Kv1.
View Article and Find Full Text PDFNa1.6 () is a major voltage-gated sodium channel in the mammalian CNS, and is highly concentrated at the axon initial segment (AIS). As previously demonstrated, the microtubule associated protein MAP1B binds the cytoplasmic N terminus of Na1.
View Article and Find Full Text PDFIn this paper we show that an autoregressive fractionally integrated moving average time-series model can identify two types of motion of membrane proteins on the surface of mammalian cells. Specifically we analyze the motion of the voltage-gated sodium channel Nav1.6 and beta-2 adrenergic receptors.
View Article and Find Full Text PDFThe potassium channels Kv2.1 and Kv2.2 are widely expressed throughout the mammalian brain.
View Article and Find Full Text PDFKv2.1 exhibits two distinct forms of localization patterns on the neuronal plasma membrane: One population is freely diffusive and regulates electrical activity via voltage-dependent K conductance while a second one localizes to micrometer-sized clusters that contain densely packed, but nonconducting, channels. We have previously established that these clusters represent endoplasmic reticulum/plasma membrane (ER/PM) junctions that function as membrane trafficking hubs and that Kv2.
View Article and Find Full Text PDFAdvances in three-dimensional secondary ion mass spectrometry (SIMS) imaging have enabled visualizing the subcellular distributions of various lipid species within individual cells. However, the difficulty of locating organelles using SIMS limits efforts to study their lipid compositions. Here, the authors have assessed whether endoplasmic reticulum (ER)-Tracker Blue White DPX, which is a commercially available stain for visualizing the endoplasmic reticulum using fluorescence microscopy, produces distinctive ions that can be used to locate the endoplasmic reticulum using SIMS.
View Article and Find Full Text PDFProtein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it has been recently recognized that ion channels assemble into surface nanoclusters in the soma of cultured neurons. However, the interactions of these molecules with surface nanodomains display a considerable degree of heterogeneity.
View Article and Find Full Text PDFStochastic motion on the surface of living cells is critical to promote molecular encounters that are necessary for multiple cellular processes. Often the complexity of the cell membranes leads to anomalous diffusion, which under certain conditions it is accompanied by non-ergodic dynamics. Here, we unravel two manifestations of ergodicity breaking in the dynamics of membrane proteins in the somatic surface of hippocampal neurons.
View Article and Find Full Text PDFA broad range of membrane proteins display anomalous diffusion on the cell surface. Different methods provide evidence for obstructed subdiffusion and diffusion on a fractal space, but the underlying structure inducing anomalous diffusion has never been visualized because of experimental challenges. We addressed this problem by imaging the cortical actin at high resolution while simultaneously tracking individual membrane proteins in live mammalian cells.
View Article and Find Full Text PDFThe voltage-dependent K channel Kv1.3 (also known as KCNA3), which plays crucial roles in leukocytes, physically interacts with KCNE4. This interaction inhibits the K currents because the channel is retained within intracellular compartments.
View Article and Find Full Text PDFVoltage-gated sodium (Nav) channels are responsible for the depolarizing phase of the action potential in most nerve cells, and Nav channel localization to the axon initial segment is vital to action potential initiation. Nav channels in the soma play a role in the transfer of axonal output information to the rest of the neuron and in synaptic plasticity, although little is known about Nav channel localization and dynamics within this neuronal compartment. This study uses single-particle tracking and photoactivation localization microscopy to analyze cell-surface Nav1.
View Article and Find Full Text PDFJunctions between cortical endoplasmic reticulum (cER) and the plasma membrane are a subtle but ubiquitous feature in mammalian cells; however, very little is known about the functions and molecular interactions that are associated with neuronal ER-plasma-membrane junctions. Here, we report that Kv2.1 (also known as KCNB1), the primary delayed-rectifier K(+) channel in the mammalian brain, induces the formation of ER-plasma-membrane junctions.
View Article and Find Full Text PDFDuring axonal maturation, voltage-gated sodium (Nav) channels accumulate at the axon initial segment (AIS) at high concentrations. This localization is necessary for the efficient initiation of action potentials. The mechanisms underlying channel trafficking to the AIS during axonal development have remained elusive due to a lack of Nav reagents suitable for high resolution imaging of channels located specifically on the cell surface.
View Article and Find Full Text PDFBr J Pharmacol
November 2014
Background And Purpose: The Kv β1.3 subunit modifies the gating and pharmacology of Kv 1.5 channels in a PKC-dependent manner, decreasing channel sensitivity to bupivacaine- and quinidine-mediated blockade.
View Article and Find Full Text PDF