The screen-printed carbon electrode (SPCE) is a useful technology that has been widely used in the practical application of biosensors oriented to point-of-care testing (POCT) due to its characteristics of cost-effectiveness, disposability, miniaturization, wide potential window, and simple electrode design. Compared with gold or platinum electrodes, surface modification is difficult because the carbon surface is chemically or physically stable. Oxygen plasma (O) can easily produce carboxyl groups on the carbon surface, which act as scaffolds for covalent bonds.
View Article and Find Full Text PDFEnergy supply and sensor response acquisition can be performed wirelessly, enabling biosensors as Internet of Thing (IoT) tools by linking wireless power supply and electrochemical sensors. Here, we used the electromagnetic induction method to clarify the conditions under which electrochemiluminescence is induced by a simple potential modulation circuit without an integrated circuit on the electrode chip that receives the power. Initially, the potential waveform obtained in a circuit with inductance and capacitance components that resonate with the transmission frequency and a diode for rectification was investigated to clarify the conditions inducing an electrochemiluminescence reaction at the printed electrode.
View Article and Find Full Text PDFMicromachines (Basel)
January 2024
DNA microarrays have been applied for comprehensive genotyping, but remain a drawback in complicated operations. As a solution, we previously reported the solid-phase collateral cleavage (SPCC) system based on the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 12 (CRISPR/Cas12). Surface-immobilized Cas12-CRISPR RNA (crRNA) can directly hybridize target double-stranded DNA (dsDNA) and subsequently produce a signal via the cleavage of single-stranded DNA (ssDNA) reporter immobilized on the same spot.
View Article and Find Full Text PDFThe clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 12 (Cas12) system is attracting interest for its potential as a next-generation nucleic acid detection tool. The system can recognize double-stranded DNA (dsDNA) based on Cas12-CRISPR RNA (crRNA) and induce signal transduction by collateral cleavage. This property is expected to simplify comprehensive genotyping.
View Article and Find Full Text PDFSingle-cell analysis has become increasingly important in uncovering cell heterogeneity, which has great implications in medicine and biology for a deep understanding of cell characteristics. Owing to its significance, it is vital to create novel devices that can reveal special or unique cells. In this work, we developed a single-cell secretion detection chip consisting of microwells that can trap single cells.
View Article and Find Full Text PDFThe use of microfluidic technology in single-cell assay has shown potential in biomedical applications like protein quantification, immune response monitoring, and drug discovery. Because of the details of information that can be obtained at single-cell resolution, the single-cell assay has been applied to tackle challenging issues such as cancer treatment. Information like the levels of protein expression, cellular heterogeneity, and unique behaviors within subsets are very important in the biomedical field.
View Article and Find Full Text PDFGlycolipid chips having a double layer of Au nanoparticles are proposed for detection of biological toxins. The sugar-modified chips constitute an under and an upper layer of Au nanoparticles of 20-80 nm diameter on glass plates, and Au nanoparticles of each layer are linked with 1,8-octanedithiol by a self-assembled monolayer (SAM) technique. A tris-sialo glycosphingolipid, ganglioside GT1b, having lipoic amide at the sphingosine part was immobilized on the Au outside surface of the upper layer, and botulinum toxin (type A heavy chain) was detected by localized surface plasmon resonance (LSPR).
View Article and Find Full Text PDFA new non-invasive screening profile has been realized that can aid in determining T-cell activation state at single-cell level. Production of activated T-cells with good specificity and stable proliferation is greatly beneficial for advancing adoptive immunotherapy as innate immunological cells are not effective in recognizing and eliminating cancer as expected. The screening method is realized by relating intracellular Ca intensity and motility of T-cells interacting with APC (Antigen Presenting Cells) in a microfluidic chip.
View Article and Find Full Text PDFMonitoring biomarkers is a great way to assess daily physical condition, and using saliva instead of blood samples is more advantageous as the process is simple and allows individuals to test themselves. In the present study, we analyzed the titers of neutralizing antibodies, IgG and secretory IgA (sIgA), in response to the SARS-CoV-2 vaccine, in saliva. A total of 19 saliva and serum samples were collected over a 10-month period 3 weeks after the first vaccine, 8 months after the second vaccine, and 1 month after the third vaccine.
View Article and Find Full Text PDFImportance: Long-term use of oral anticoagulants (OACs) is necessary for stroke prevention in patients with atrial fibrillation (AF). The effectiveness and safety of OACs in extremely older patients (ie, aged 80 years or older) with AF and at high risk of bleeding needs to be elucidated.
Objective: To examine the effects of very low-dose edoxaban (15 mg) vs placebo across 3 age strata (80-84 years, 85-89 years, and ≥90 years) among patients with AF who were a part of the Edoxaban Low-Dose for Elder Care Atrial Fibrillation Patients (ELDERCARE-AF) trial.
In this paper, we introduce portable sensors based on genetic measurements that can be used in the field for the diagnosis of infectious diseases and disease risk based on SNPs (single nucleotide polymorphisms). In particular, the sensors are based on electrochemical measurements that can be performed with printed electrodes and small measuring devices. Indicator molecules that can bind to nucleic acid molecules in various ways are already known, and some of these molecules have electrochemical activity.
View Article and Find Full Text PDFBackground: Serum uric acid-lowering therapy is associated with maintaining renal function.
Objective: We aimed to retrospectively evaluate renal function and serum uric acid in patients with hyperuricemia who received topiroxostat for over a year.
Methods: Medical records of patients from 1 January, 2015 to 31 October, 2019 in our hospital were used.
A Au-capped nanopillar chip was prepared using nanoimprint lithography (NIL) and Au sputtering onto a cyclo-olefin polymer film. The Au surface of the chip exerting localized surface plasmon resonance (LSPR) phenomena was immobilized with a glycopolymer for the detection of cytokines. The glycopolymers were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization for controlled polymer chain length, and thiol-terminated glycopolymers with chain lengths of 20-, 100-, and 200-mers were designed.
View Article and Find Full Text PDFAccording to our previously proposed scheme, each of three kinds of glycosphingolipid (GSL) derivatives, that is, lactosyl ceramide [Lac-Cer ()] and gangliosides [GM1-Cer () and GT1b-Cer ()], was installed onto the glass surface modified with Au nanoparticles. In the present study, we tried to apply microwave irradiation to promote their installing reactions. Otherwise, this procedure takes a lot of time as long as a conventional self-assembled monolayer (SAM) technique is applied.
View Article and Find Full Text PDFOlanexidine gluconate 1.5% (Olanedine) is a colorless and transparent antiseptic agent introduced in 2015. In this study, we examined its usefulness and safety for cardiovascular catheterization and compared them to 10% povidone-iodine (PI).
View Article and Find Full Text PDFThe need for high throughput single cell screening platforms has been increasing with advancements in genomics and proteomics to identify heterogeneity, unique cell subsets or super mutants from thousands of cells within a population. For real-time monitoring of enzyme kinetics and protein expression profiling, valve-based microfluidics or pneumatic valving that can compartmentalize single cells is advantageous by providing on-demand fluid exchange capability for several steps in assay protocol and on-chip culturing. However, this technique is throughput limited by the number of compartments in the array.
View Article and Find Full Text PDFWe studied the elastic profile of monocytic THP-1 leukemia cells using a microfluidic-assisted optical trap. A 2-m fused silica bead was optically trapped to mechanically dent an immobilized single THP-1 monocyte sieved on a 15-µm microfluidic capture chamber. Cells treated with Zeocin and untreated cells underwent RT-qPCR analysis to determine cell apoptosis through gene expression in relation to each cell's deformation profile.
View Article and Find Full Text PDFRecent advances in microfluidic techniques have enabled researchers to study sensitivities to immune checkpoint therapy, to determine patients' response to particular antibody treatment. Utilization of this technology is helpful in antibody discovery and in the design of personalized medicine. A variety of microfluidic approaches can provide several functions in processes such as immunologic, genomic, and/or transcriptomic analysis with the aim of improving the efficacy and coverage of immunotherapy, particularly immune checkpoint blockade (ICB).
View Article and Find Full Text PDFBackground: Home-based care is one of the most promising solutions to provide sufficient medical care for several older patients in Japan. However, because of insufficient diagnostic devices, it is sometimes difficult to detect early signs of the occurrence or worsening of diseases, such as infections under home-based care settings. C-reactive protein (CRP) is highly sensitive to diagnosing infections, and its elevation can help diagnose acute infection in older patients.
View Article and Find Full Text PDFMental stress is closely connected with our physical and mental wellness. Therefore, stress measurement can contribute to assess our lifestyle and increase our quality of life. In this paper, we detect the secretory immunoglobulin A (sIgA), which is the candidate of salivary stress markers, with original electrochemical immunoassay: gold-linked electrochemical immunoassay (GLEIA).
View Article and Find Full Text PDFCytokine secretion researches have been a main focus of studies among the scientists in the recent decades for its outstanding contribution to clinical diagnostics. Localized surface plasmon resonance (LSPR) technology is one of the conventional methods utilized to analyze these issues, as it could provide fast, label-free and real-time monitoring of biomolecule binding events. However, numerous LSPR-based biosensors in the past are usually utilized to monitor the average performance of cell groups rather than single cells.
View Article and Find Full Text PDFMicromachines (Basel)
December 2019
A simple microengraving cell monitoring method for neutrophil extracellular traps (NETs) released from single neutrophils has been realized using a polydimethylsiloxane (PDMS) microwell array (MWA) sheet on a plasmon chip platform. An imbalance between NETs formation and the succeeding degradation (NETosis) are considered associated with autoimmune disease and its pathogenesis. Thus, an alternative platform that can conduct monitoring of this activity on single cell level at minimum cost but with great sensitivity is greatly desired.
View Article and Find Full Text PDFGranzyme B (GrB) is an essential cytotoxic effector in cancer immunotherapy as it can be a potential biomarker to predict the efficacy of immunotherapies including checkpoint inhibitors. Monitoring the Granzyme B activity in cells would help determine a patient's clinical response to treatment and lead to better treatment strategies by preventing administration of ineffective therapies and avoid adverse events resulting in a delay in subsequent treatment. : A microfluidic device with hydrodynamic traps and pneumatic valving system was fabricated using photo and soft lithography.
View Article and Find Full Text PDFMiniaturizing the enzyme-linked immunosorbent assay (ELISA) protocols in microfluidics is sought after by researchers for a rapid, high throughput screening, on-site diagnosis, and ease in operation for detection and quantification of biomarkers. Herein, we report the use of the centrifugation-controlled convective (C3) flow as an alternative method in fluid flow control in a ring-structured channel for enhanced on-chip ELISA. A system that consists of a rotating heater stage and a microfluidic disk chip has been developed and demonstrated to detect IgA.
View Article and Find Full Text PDF